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How fo get messages across
more eFFec’rlvely?
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What factors determine the
success of messages?

Important factors [Mikman

and Berger, 2012; Romero et al. 2013; Suh
et al. 2010; etc]

Characteristics of the author,
author’s social network

Message topic

Message timing
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4 Reply 4¢3 Retweet % Favorite <+ More
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How to get messages across
more effectively?

* Find a good topic [Guerini ecal.2011]

e Become influential or find influential users to
help spread [kempe e al. 2003]



How to get messages across
more effectively?

* Find a good topic [Guerini etal.2011]

e Become influential or find influential users to
help spread [kempe et al. 2003]

* Improve the quality of the content

— IMage [lsola et al. 201 1]
— Wording

humor, informative, emphasize certain aspects



Revisit the example:
Does wording actually matter?

|2
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Revisit the example:
Does wording actually matter?

] Barack Obama ¥ -2 Follow
A BarackObama
FE

«

It is all about followers (Score:3, Interesting)

by mysterons (1472839) on Thursday May 15, 2014 @01:36PM (#47010441)

We did a study on predicting when a tweet would be retweeted (this paper cites us).
but how many followers you have
An unknown person can write the same tweet and it will be ignored.

Link to paper:

Sasa Petrovic, Miles Osborne and Victor Lavrenko. RT to win! Predicting Message Propagation in
Twitter. ICWSM, Barcelona, Spain. July 201 I. http://homepages.inf.ed.ac.uk/... [ed.ac.uk]
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How can we focus on the effect
of wording?



Add more control to better
understand the effect of wording

e Author control
— Obama vs. me

* Topic control
— Presidential election vs. this talk

What if BarackObama had posted about re-
election using a different wording?

e.g.”4 more years to prove that we can!”



The same users post multiple
tweets on the same topic

Topic- and author-controlled pairs

UAAIK| cactus_music UAANN | cactus_music

r'LI‘:t' @cactus_music r'LI‘:t' @cactus_music
I know at some point you've have Food trucks are the epitome of
been saved from hunger by our small independently owned LOCAL
rolling food trucks friends. Let's businesses! Help keep them going!
help support them! |bit.ly/P6GYCq Sign the petition|bit.ly/P6GYCq
7:59 PM - 15 Sep 2012 8:01 PM - 15 Sep 2012

« 13 % +« 13 %

v
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Topic- and author-controlled pairs
are common!

* 2.4 Million topic- and author-controlled tweet
pairs
— |.77M differing in more than just spacing

— 632K whose difference was only spacing
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More cleaning up is required for
natural experiments!

° Timing can matter (thankfully, Twitter doesn’t re-rank
posts, but presents strictly in chronological order)

— The first one may enjoy a first-mover advantage
— The second one may be preferred as the updated one

* Number of followers also has complicated
effects
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Use identical pairs to find an
"ideal” setting

e Notation

— 11 : number of retweets

e « hypothetical
for the first tweet
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Use

D = Z \E(nz\nl) —nl\

0<n; <10

As time lag increases, D
decreases as we get more o
data and then increases

As number of followers
increases, D decreases

16|
14/
12|
10|

to find an
"ideal” setting

nN_» O

—v >1K f'ers
— >25Kfers
o—eo 5K f'ers
+— >10K f'ers
3 6 12 18 24 36 48

time lag (hours) y




The ideal setting found through identical pairs:

users who have more than 5K followers

two tweets are posted withinl2 hours
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More filtering

* |deal setting: >5K followers, <|2 hours

* Non-trivial textual changes
— Similarity below median to avoid typos, etc

* Significant changes in retweet numbers
— Take top 5% and bottom 5% in terms of 1o — T

* Limit the number of pairs by an author to 50

This brings us | IK topic- and author- controlled
pairs for natural experiments!
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Does wording matter?

Wording does not
matter

Humans can tell which one in
a pair was retweeted more
(accuracy > 50%)

Humans should not be able
to tell which one in a pair
was retweeted more

Wording matters!
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Can humans tell which tweet will
be retweeted more?

* Randomly sample 100 pairs
* 20 pairs a task on Amazon Mechanical Turk

* 39 judgments for each pair
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Can humans tell which tweet will
be retweeted more?

50%

60%

70%

Average accuracy for
each labeler: 61.3%

Accuracy of the
majority label for each

pair: 73%
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Predict which tweet will be
retweeted more within a pair

* Cross validation experiments: | | K topic- and
author-controlled pairs (5-fold cross
validation)

* Heldout experiments: |.8K topic- and author-
controlled pairs from a different group of
users that have never been used

(Only used once, 6 days before submission!)
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Predict which tweet will be
retweeted more within a pair

 Features

— Custom features that we proposed: lexicons,
informativeness, language model features, etc (39
features)

— Bag of words: unigram+bigram (7K features)

* Approach

— Take the difference between features for two
tweets in a pair after linear normalization

— Logistic regression
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Predict which tweet will be
retweeted more within a pair

* A strong baseline

— A classifier to distinguish | OK most retweeted
unpaired tweets from 0K least retweeted
unpaired tweets

— Use bag-of-words features, [number of followers
and timing]

— Cross validation accuracy 98.8%
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Cross-validation performance:
IS control necessary?

Accuracy without control

majority

without control

length!

custom

1,2-gram

custom+1,2-gram
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Cross-validation performance

Best method
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e Custom does pretty

well by itself, and
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human accuracy
* Adding custom

Average human accuracy
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Fortunately, same results hold in
heldout data

Accuracy without control
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Should we conform to community
norm?

* Train language models using non-paired tweets

* Compute unigram, bigram language model
score

higher score = closer to twitter language

e Test whether more retweeted tweets have a
larger score
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Be like the community (conformity)

* Train language models using non-paired tweets

* Compute unigram, bigram language model

SCOore

higher score = closer to twitter language

e Test whether more retweeted tweets have a

larger score

Effective!?
Twitter unigram language model |p < 0.001
Twitter bigram language model |p < 0.001l
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Should we maintain personal
style?
* Train language models using history of each

person

* Compute unigram, bigram language model score
higher score = closer to personal history

e Test whether more retweeted tweets have a
larger score
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Be true fo yourself

* Train language models using history of each
person

* Compute unigram, bigram language model score
higher score = closer to personal history

e Test whether more retweeted tweets have a
larger score

Effective!?

Personal unigram language model | p < 0.001

Personal bigram language model
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Take away

* We used topic- and author-controlled pairs to
show that wording matters!

* Average human is not perfect in telling which
is better; computers can do better

* Controlling topics and authors can improve
predictive performance significantly over an
approach without control
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Thank you & Questions?

* Data
http://chenhaot.com/pages/wording-for-propagation.html

e Demo

http://chenhaot.com/retweetedmore

e Quiz

http://chenhaot.com/retweetedmore/quiz
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