The effect of wording on message propagation: Topic- and author-controlled natural experiments on Twitter

Chenhao Tan, Lillian Lee, Bo Pang Cornell University, Google

How to get messages across more effectively?

Following

Flag media

What factors determine the success of messages?

Important factors [Milkman and Berger, 2012; Romero et al. 2013; Suh et al. 2010; etc]

- Characteristics of the author, author's social network
- Message topic
- Message timing

Four more years. pic.twitter.com/bAJE6Vom

♠ Reply ★ Retweet ★ Favorite · More

775.969

FAVORITES 294,938

How to get messages across more effectively?

- Find a good topic [Guerini et al. 2011]
- Become influential or find influential users to help spread [Kempe et al. 2003]

How to get messages across more effectively?

- Find a good topic [Guerini et al. 2011]
- Become influential or find influential users to help spread [Kempe et al. 2003]
- Improve the quality of the content
 - Image [Isola et al. 2011]
 - Wording

humor, informative, emphasize certain aspects

Revisit the example: Does wording actually matter?

775,969 FAVORITES **775,969 294,938**

1 9 3 9 9

Revisit the example: Does wording actually matter?

It is all about followers (Score:3, Interesting)

by mysterons (1472839) on Thursday May 15, 2014 @01:36PM (#47010441)

We did a study on predicting when a tweet would be retweeted (this paper cites us). The dominant factor is not what you write, but how many followers you have. Basically, a famous person can write anything and it will be retweeted. An unknown person can write the same tweet and it will be ignored.

Link to paper:

Sasa Petrovic, Miles Osborne and Victor Lavrenko. RT to win! Predicting Message Propagation in Twitter. ICWSM, Barcelona, Spain. July 2011. http://homepages.inf.ed.ac.uk/... [ed.ac.uk]

Reply to This

Share

FAVORITES

How can we focus on the effect of wording?

Add more control to better understand the effect of wording

- Author control
 - Obama vs. me
- Topic control
 - Presidential election vs. this talk

What if BarackObama had posted about reelection using a different wording? e.g. "4 more years to prove that we can!"

The same users post multiple tweets on the same topic

Topic- and author-controlled pairs

I know at some point you've have been saved from hunger by our rolling food trucks friends. Let's help support them! bit.ly/P6GYCq

7:59 PM - 15 Sep 2012

Food trucks are the epitome of small independently owned LOCAL businesses! Help keep them going! Sign the petition bit.ly/P6GYCq

8:01 PM - 15 Sep 2012

Topic- and author-controlled pairs are common!

- 2.4 Million topic- and author-controlled tweet pairs
 - I.77M differing in more than just spacing
 - 632K whose difference was only spacing

More cleaning up is required for natural experiments!

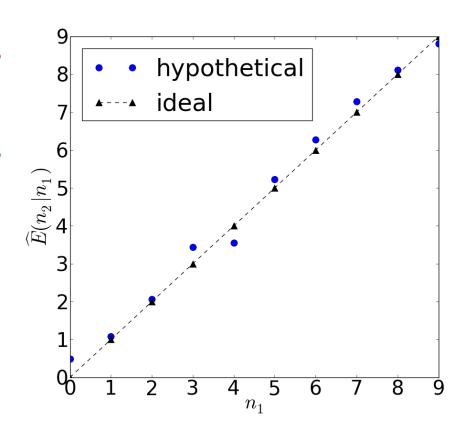
- Timing can matter (thankfully, Twitter doesn't re-rank posts, but presents strictly in chronological order)
 - The first one may enjoy a first-mover advantage
 - The second one may be preferred as the updated one

Number of followers also has complicated effects

Use identical pairs to find an "ideal" setting

- Notation
 - $-n_1$: number of retweets for the first tweet
 - $-n_2$: number of retweets for the second tweet
- Difference between n_1 and n_2

$$D = \sum_{0 \le n_1 \le 10} |\widehat{E}(n_2|n_1) - n_1|$$

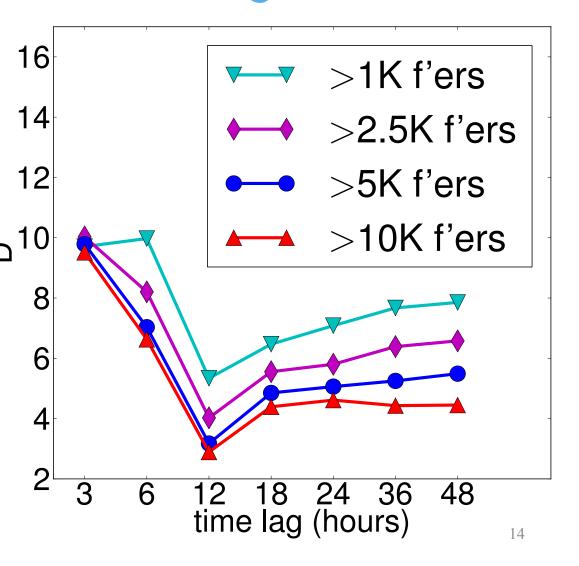


Use identical pairs to find an "ideal" setting

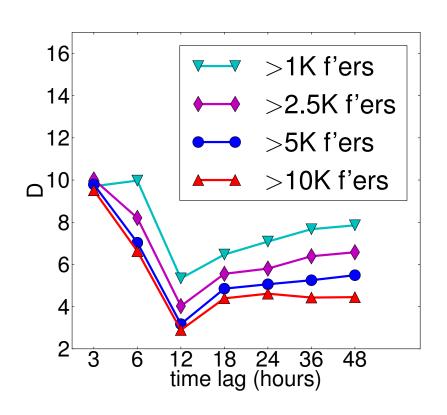
$$D = \sum_{0 \le n_1 < 10} |\widehat{E}(n_2|n_1) - n_1|$$

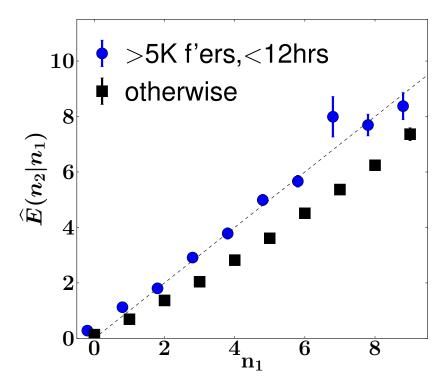
As time lag increases, *D* decreases as we get more \square data and then increases

As number of followers increases, *D* decreases



The ideal setting found through *identical* pairs: users who have more than 5K followers two tweets are posted within 12 hours





More filtering

- Ideal setting: >5K followers, <12 hours
- Non-trivial textual changes
 - Similarity below median to avoid typos, etc
- Significant changes in retweet numbers
 - Take top 5% and bottom 5% in terms of n_2-n_1
- Limit the number of pairs by an author to 50

This brings us IIK topic- and author- controlled pairs for natural experiments!

Does wording matter?

Wording does not matter

Humans can tell which one in a pair was retweeted more (accuracy > 50%)

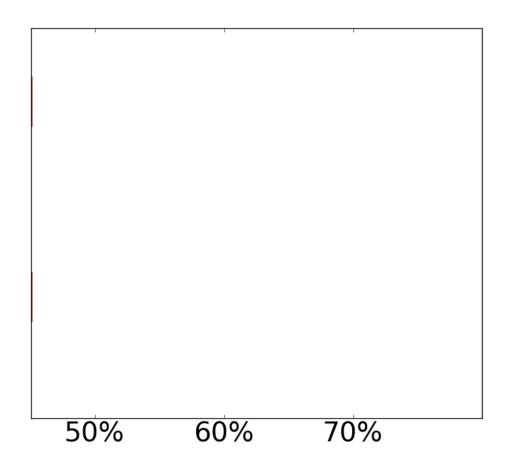
Humans should not be able to tell which one in a pair was retweeted more

Wording matters!

Can humans tell which tweet will be retweeted more?

- Randomly sample 100 pairs
- 20 pairs a task on Amazon Mechanical Turk
- 39 judgments for each pair

Can humans tell which tweet will be retweeted more?



Average accuracy for each labeler: 61.3%

Accuracy of the majority label for each pair: 73%

Predict which tweet will be retweeted more within a pair

- Cross validation experiments: I IK topic- and author-controlled pairs (5-fold cross validation)
- Heldout experiments: I.8K topic- and authorcontrolled pairs from a different group of users that have never been used

(Only used once, 6 days before submission!)

Predict which tweet will be retweeted more within a pair

Features

- Custom features that we proposed: lexicons, informativeness, language model features, etc (39 features)
- Bag of words: unigram+bigram (7K features)

Approach

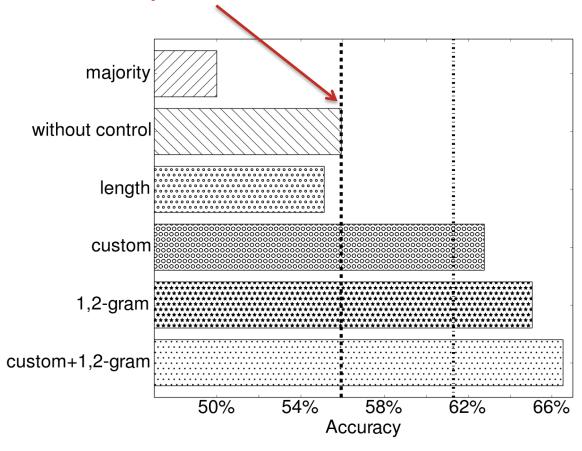
- Take the difference between features for two tweets in a pair after linear normalization
- Logistic regression

Predict which tweet will be retweeted more within a pair

- A strong baseline
 - A classifier to distinguish IOK most retweeted unpaired tweets from IOK least retweeted unpaired tweets
 - Use bag-of-words features, [number of followers and timing]
 - Cross validation accuracy 98.8%

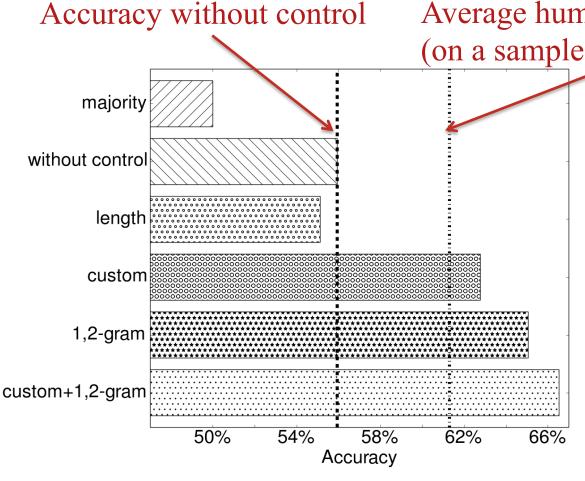
Cross-validation performance: is control necessary?

Accuracy without control



 Best method outperforms the baseline by more than 10%

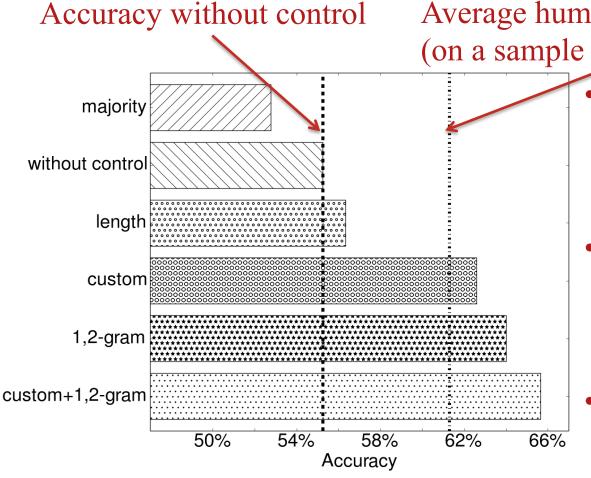
Cross-validation performance



Average human accuracy (on a sample of 100 pairs)

- Best method outperforms the baseline by more than 10%
- Custom does pretty well by itself, and outperforms average human accuracy
 - Adding custom improves bag-of-words

Fortunately, same results hold in heldout data



Average human accuracy (on a sample of 100 pairs)

- Best method outperforms the baseline by more than 10%
- Custom does pretty well by itself, and outperforms average human accuracy
 - Adding custom improves bag-of-words

Should we conform to community norm?

- Train language models using non-paired tweets
- Compute unigram, bigram language model score
 - higher score = closer to twitter language
- Test whether more retweeted tweets have a larger score

Be like the community (conformity)

- Train language models using non-paired tweets
- Compute unigram, bigram language model score
 - higher score = closer to twitter language
- Test whether more retweeted tweets have a larger score

	Effective?
Twitter unigram language model	p < 0.001
Twitter bigram language model	p < 0.001

Should we maintain personal style?

- Train language models using history of each person
- Compute unigram, bigram language model score higher score = closer to personal history
- Test whether more retweeted tweets have a larger score

Be true to yourself

- Train language models using history of each person
- Compute unigram, bigram language model score higher score = closer to personal history
- Test whether more retweeted tweets have a larger score

	Effective?
Personal unigram language model	p < 0.001
Personal bigram language model	

Take away

- We used topic- and author-controlled pairs to show that wording matters!
- Average human is not perfect in telling which is better; computers can do better
- Controlling topics and authors can improve predictive performance significantly over an approach without control

Thank you & Questions?

Data

http://chenhaot.com/pages/wording-for-propagation.html

Demo

http://chenhaot.com/retweetedmore

Quiz

http://chenhaot.com/retweetedmore/quiz