Instant Foodie: Predicting Expert Ratings From Grassroots

Chenhao Tan, Ed H. Chi, David Huffaker, Gueorgi Kossinets, Alexander J. Smola Cornell University & Google

A World of Ratings

SERVICE

29

SERVICE

28

SERVICE

26

SERVICE

26

SERVICE

22

COST

\$111

COST

\$107

COST

\$45

COST

\$56

COST

\$44

Average Ratings Are Important

A one-star increase in Yelp ratings leads to 5-9% increase in revenue. [Luca 2011]

THE PROBLEM WITH AVERAGING STAR RATINGS But there are problems ...

How do we collect a large number of reliable ratings to get good average ratings?

Ask "Grassroots"

A Large number of ratings for different items

- Self-selection bias
 - What to buy, limited experiences
 - What to rate (brag-and-moan [Hu et al. 2006])
- Variance in motivation to submit ratings, the understanding of ratings, tastes, etc
- Deception [Ott et al. 2012]

Ask "Experts"

- A smaller coverage
- Mitigating self-selection bias
 - An extensive set of items experienced
 - A predetermined set of items to rate
- Repeated surveys at regular intervals reduces the variance (e.g. Michelin Guide, Zagat Survey)

FOOD	DECOR	SERVICE	COST
29	27	29	\$111

Zagat

- Zagat restaurant guides were named as "a necessity second only to a valid credit card" by the New York Times
- Zagat ratings are in three dimensions for restaurants, food, décor, service
- Zagat repeatedly sends surveys on a predetermined set of restaurants to frequent users

How do "grassroots" Google Place ratings correlate with "expert" Zagat ratings?

Correlation Between Google Place Ratings and Zagat Ratings

Little correlation without learning

Correlation is particularly bad in décor

Bridge Two Popular Approaches

Ask "Grassroots"

A Large number of ratings

- Self-selection bias
- Variance in motivation to submit ratings, the understanding of ratings, tastes, etc
- Deception [Ott et al. 2012]

Ask "Experts"

A smaller coverage

Self-selection bias is mitigated Repeated surveys at regular intervals reduces the variance (e.g. Michelin Guide, Zagat Survey)

Preview

- We can generate an instant foodie by predicting "expert" Zagat ratings from "grassroots" Google Place ratings
- We find that users with more experiences are harsher
- We can answer questions such as what is the Gary Danko of New York?

Related Work

- Collaborative filtering
 - Matrix factorization [Koren and Bell 2011, Weimer et al. 2008, Yu et al 2009, ...]
 - We build on this framework
 - Transferring information between domains [Li et al. 2009, Pan et al. 2010, Zhang et al. 2010]
 - We are trying to transfer information between different approaches to collecting ratings
- Crowdsourced Labeling

[Raykar et al. 2010, Dekel and Shamir 2009, Whitehill et al. 2009, Rasch 60, Dawid and Skene 1979, Heckman 1979]

Task

- Training data:
 - All the "grassroots" GooglePlace ratings

- Part of the "expert" Zagat ratings to provide some supervision
- Testing data:
 - Rest of the "expert" Zagat ratings

FOOD	DECOR	SERVICE	COST
28	28	29	\$101

Approach Framework

Matrix Factorization

Formulation

- Each place vector decomposes into different factors
 - Place itself, city, category, price level

$$\bar{u}_p = u_p + u_{\text{city}} + u_{\text{cat}} + u_{\$}$$

Objective Function

$$\sum_{(p,r)\in GP} \frac{1}{2} (y_{pr} - s_{pr})^2 + \sum_{p\in Z} \sum_{i\in\{f,d,s\}} \frac{1}{2} (y_{pi} - s_{pi})^2$$

+ constant + regularization

Data

- 2M "grassroots" Google place ratings
 - One-dimensional
- 30K "expert" Zagat ratings
 - Three-dimensional (food, décor, service)

Experiment Setup

- Baseline
 - Average transformation
 - Linear regression without joint optimization

- Evaluation Measure
 - Root mean squared error (RMSE)
 - Pearson Correlation

Correlation Comparison

Improved significantly with regression

Joint optimization improves it further

The improvement in décor is especially significant

RMSE Comparison

User Bias vs. Experience

Users who give more ratings are more discerning

Place Vector

- Remember that each place vector decomposes into different factors
 - Place itself, city, category, price level $\bar{u}_p = u_p + u_{\rm city} + u_{\rm cat} + u_{\$}$
- We can get food, décor, service score for different price levels by

$$\langle u_{\$}, v_{zf} \rangle, \langle u_{\$}, v_{zd} \rangle, \langle u_{\$}, v_{zs} \rangle$$

Rating vs. Price

The ratings increase with price levels

For food, there is not much difference between \$ and \$\$

Most Similar Place

What is the Gary Danko of New York, Chicago?

FOOD DECOR SERVICE COST 29 27 29 \$111

New York

Chicago

Jean Georges Restaurant

FOOD	DECOR	SERVICE	COST
28	27	28	\$153

Cafe Boulud

FOOD	DECOR	SERVICE	COST
27	24	26	\$82

Annisa

FOOD	DECOR	SERVICE	COST
27	24	26	\$87

Les Nomades

FOOD	DECOR	SERVICE	COST
28	26	28	\$126

Tru

FOOD	DECOR	SERVICE	COST
27	27	28	\$150

Spiaggia

FOOD	DECOR	SERVICE	COST
26	26	26	\$104

Most Similar Place

What is the Tartine Bakery & Café of New York, Chicago?

FOOD	DECOR	SERVICE	COST
27	15	16	\$16

New York

Chicago

Veniero's Pasticceria

FOOD	DECOR	SERVICE	COST
24	17	19	\$18

Amy's Bread Chelsea

FOOD	DECOR	SERVICE	COST
24	14	21	\$14

Mille-feuille Bakery Café

No Zagat

Lou Mitchell's

FOOD	DECOR	SERVICE	COST
24	14	20	\$17

Starbucks

No Zagat

Molly's Cupcakes

No Zagat

Summary

- There is a gap between grassroots ratings and expert ratings
- It is possible to reconcile the two quite different approaches via joint optimization
- As users submit more ratings, they tend to become more discerning overall

Thank you & Questions?

Chenhao Tan
chenhao@cs.cornell.edu
www.cs.cornell.edu/~chenhao/