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Can you solve this with linear separator?
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Adding another dimension

Behold yon miserable creature. That Point is a Being like
ourselves, but confined to the non-dimensional Gulf. He
is himself his own World, his own Universe; of any other
than himself he can form no conception; he knows not
Length, nor Breadth, nor Height, for he has had no
experience of them; he has no cognizance even of the
number Two; nor has he a thought of Plurality, for he is
himself his One and All, being really Nothing. Yet mark
his perfect self-contentment, and hence learn this lesson,
that to be self-contented is to be vile and ignorant, and
that to aspire is better than to be blindly and impotently
happy.
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Problems get easier in higher dimensions
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What’s special about SVMs?

max
α

m∑
i=1

αi −
1
2

m∑
i=1

m∑
i=1

αiαjyiyj(xi · xj) (1)

• This dot product is basically just how much xi looks like xj. Can we generalize
that?

• Kernels!
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What’s a kernel?

• A function K : X × X 7→ R is a kernel over X .
• This is equivalent to taking the dot product 〈φ(x1), φ(x2)〉 for some mapping
• Mercer’s Theorem: So long as the function is continuous and symmetric, then

K admits an expansion of the form

K(x, x′) =
∞∑

n=0

anφn(x)φn(x′) (2)

• The computational cost is just in computing the kernel
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Kernel Matrix

The important property of the kernel matrix K = [K(xi, xj)]ij ∈ Rm×m is symmetric
positive semidefinite.

KT = K

∀x, xTKx ≥ 0

Also known as Gram matrix.
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Polynomial Kernel

K(x, x′) = (x · x′ + c)d (3)

When d = 2, c = 1:
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Gaussian Kernel

K(x, x′) = exp−‖x
′ − x‖2

2σ2 (4)

which can be rewritten as

K(x, x′) =
∑

n

(x · x′)n

σnn!
(5)

(All polynomials!)
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Tree Kernels

• Sometimes we have example x that are hard to express as vectors
• For example sentences “a dog” and “a cat”: internal syntax structure

3/5 structures match, so tree kernel returns .6
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What does this do to learnability?

• Kernelized hypothesis spaces are obviously more complicated
• What does this do to complexity?
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How does it affect optimization

• Replace all dot product with kernel evaluations K(x1, x2)

• Makes computation more expensive, overall structure is the same
• Try linear first!
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Examples

Outline

Examples
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Examples

Kernelized SVM

X, Y = read_data ( " ex8a . t x t " )
c l f = svm .SVC( kerne l=kk , degree=dd , gamma=gg )
c l f . f i t (X , Y)
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Examples

Linear Kernel Doesn’t Work
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Examples

Polynomial Kernel

K(x, x′) = (x · x′ + c)d (6)

When d = 2:
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Examples

Polynomial Kernel d = 1, c = 5
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Examples

Polynomial Kernel d = 2, c = 5
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Examples

Polynomial Kernel d = 3, c = 5
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Examples

Gaussian Kernel

K(x, x′) = exp
(
γ
∥∥x′ − x

∥∥2
)

(7)
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Examples

RBF Kernel γ = 2
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Examples

RBF Kernel γ = 100
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Examples

RBF Kernel γ = 1
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Examples

RBF Kernel γ = 10
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Examples

RBF Kernel γ = 100
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Examples

RBF Kernel γ = 1000
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Examples

Be careful!

• Which has the lowest training error?
• Which one would generalize best?
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Examples

Recap

• This completes our discussion of SVMs
• Workhorse method of machine learning
• Flexible, fast, effective

• Kernels: applicable to wide range of data, inner product trick keeps method
simple
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