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Can you solve this with linear separator?
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Adding another dimension

Flatland

A Parable of
Spiritual Dimensions

Behold yon miserable creature. That Point is a Being like
ourselves, but confined to the non-dimensional Gulf. He
is himself his own World, his own Universe; of any other
than himself he can form no conception; he knows not
Length, nor Breadth, nor Height, for he has had no
experience of them; he has no cognizance even of the
number Two; nor has he a thought of Plurality, for he is
himself his One and All, being really Nothing. Yet mark
his perfect self-contentment, and hence learn this lesson,
that to be self-contented is to be vile and ignorant, and
that to aspire is better than to be blindly and impotently

happy.
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Problems get easier in higher dimensions

(x,x,)=

A

(xl,xzﬂpc;2 +x;2)
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What’s special about SVMs?

m m k(x\'/ 7(\7)
maxza,_fzzaa]yﬂ;, x) (1)

i=1 i=1

| /
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What’s special about SVMs?

m m

mgx Z o — % Z Z aiajinj(xi : xj) (1)
i=1

i=1 i=1

This dot product is basically just how much x; looks like x;. Can we generalize
that?
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What’s special about SVMs?

m m

maxza,_fzzaajylyj (5 x) 1)

i=1 i=1 )
v
This dot product is basically just how much x; Io%s like x;. Can we generalize
that? j
Kernels!
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What’s a kernel?

A function K : X x X — R is a kernel over X.
This is equivalent to taking the dot product (¢(x;), ¢(x)) for some mapping

Mercer’s Theorem: So long as the function is continuous and_symmetric, then
K admits an expansion of the form (Ay) = (Xy, 7{0)

K(x,X') = andu(x)én(x) (2
n=0

KA o)
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What’s a kernel?

A function K : X x X — R is a kernel over X.
This is equivalent to taking the dot product (¢(x;), ¢(x)) for some mapping

Mercer’s Theorem: So long as the function is continuous and symmetric, then
K admits an expansion of the form

K(x,xX') = andu(x)én(x) (2
n=0

The computational cost is just in computing the kernel

Machine Learning: Chenhao Tan |  Boulder | 60f28



Kernel Matrix

a

The important property of the kernel matrix K = [
positive semidefinite.

(xi,xj)];; € R™™ is symmetric
fooEAX) T SEWAY

\,l

/

Ehn, K,) < = - Exe, 1)
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Kernel Matrix

The important property of the kernel matrix K = [K(x;, xj)];; € R™*™ is symmetric
positive semidefinite.

K' =K
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Kernel Matrix

The important property of the kernel matrix K = [K(x;, xj)];; € R™*™ is symmetric
positive semidefinite.

Also known as Gram matrix.
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(ﬁ, X?) L)

Polynomial Kernel =& a=

K(x,xX)=(x-x +¢)? (3)
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(K(X\,)
AKX AL + 2 XX
T2X. X%/
TR 5

2

Polynomial Kernel

K(x,X)=(x-x +¢)
Whend =2,c=1:
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Gaussian Kernel QB /=

K(x,x') = exp —
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Gaussian Kernel

’ 2
K,y = oxp— F 20 g

which can be rewritten'as

k)=

o"n!

(All polynomials!)
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Gaussian Kernel

RBF kernel (C = 1, gamma = 0.25)

/ 2

_ pos. vec.
K(x,x') = exp — sz 2x]| (4) sy
g @ supp. vec.

*  margin vec.
m— decision bound.

pos. margin

neq. margin

which can be rewritten as

Krd) =% o) (5)

o"n!

(All polynomials!)
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Tree Kernels

Sometimes we have example x that are hard to express as vectors
For example sentences “a dog” and “a cat”: internal syntax structure
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Tree Kernels

Sometimes we have example x that are hard to express as vectors
For example sentences “a dog” and “a cat”: internal syntax structure

N WA N S
7 o ey = Py W
Ig IEI :';) a dog a dog I; Ig :> a cat a cat
a  dog a  cat
NP L N NP D W
KAV I AV
iy a dog D N a cat
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Tree Kernels

Sometimes we have example x that are hard to express as vectors
For example sentences “a dog” and “a cat”: internal syntax structure

N WA N S
7 o ey = Py W
Ig IEI :';) a dog a dog I; Ig :> a cat a cat
a  dog a  cat
NP L N NP D W
KAV I AV
iy a dog D N a cat

3/5 structures match, so tree kernel returns .6
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What does this do to learnability?

Kernelized hypothesis spaces are obviously more complicated
What does this do to complexity?
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How does it affect optimization

Replace all dot product with kernel evaluations K(x;,x,)
Makes computation more expensive, overall structure is the same
Try linear first!
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Outline

Examples
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Kernelized SVM

X, Y = read_data("ex8a.txt")
clf = svm.SVC(kernel=kk, degree=dd, gamma=gg)
clf . fit (X, Y)
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Linear Kernel Doesn’t Work
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Polynomial Kernel

K(x,x') = (x-x 4 ¢)? (6)
When d = 2:
(1.3 ;1 3, —\/3, \'_:;-W! V2. +v2, +v/2
o © e o
o @ | o ®
1 ,—1 1 V2, =y v iR V2, 42, =3,

16 of 28
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Polynomial Kerneld = 1,¢ =5
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Polynomial Kernel d =2.,¢c =5
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Polynomial Kernel d =3,¢c =5
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Gaussian Kernel

K(x,x') = exp (fy Hx' - xH2> (7)

RBF kernel (C = 1, gamma = 0.25)

«  pos.vec.
*  neg. vec.
O supp. vec.

= margin vec.
= cjecision bound.

pos. margin

neg. margin
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RBF Kernel v =2
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RBF Kernel v = 100
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RBF Kernel v =1
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RBF Kernel v = 10
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RBF Kernel v = 100
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RBF Kernel v = 1000
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Be careful!

Which has the lowest training error?
Which one would generalize best?
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Recap

This completes our discussion of SVMs
Workhorse method of machine learning
Flexible, fast, effective
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Recap

This completes our discussion of SVMs
Workhorse method of machine learning
Flexible, fast, effective

Kernels: applicable to wide range of data, inner product trick keeps method
simple
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