
Machine Learning: Chenhao Tan
University of Colorado Boulder
LECTURE 11

Slides adapted from Jordan Boyd-Graber

Machine Learning: Chenhao Tan | Boulder | 1 of 28

Can you solve this with linear separator?

Machine Learning: Chenhao Tan | Boulder | 2 of 28

julius
Pencil

Can you solve this with linear separator?

Machine Learning: Chenhao Tan | Boulder | 2 of 28

Can you solve this with linear separator?

Machine Learning: Chenhao Tan | Boulder | 2 of 28

julius
Pencil

Adding another dimension

Behold yon miserable creature. That Point is a Being like
ourselves, but confined to the non-dimensional Gulf. He
is himself his own World, his own Universe; of any other
than himself he can form no conception; he knows not
Length, nor Breadth, nor Height, for he has had no
experience of them; he has no cognizance even of the
number Two; nor has he a thought of Plurality, for he is
himself his One and All, being really Nothing. Yet mark
his perfect self-contentment, and hence learn this lesson,
that to be self-contented is to be vile and ignorant, and
that to aspire is better than to be blindly and impotently
happy.

Machine Learning: Chenhao Tan | Boulder | 3 of 28

Problems get easier in higher dimensions

Machine Learning: Chenhao Tan | Boulder | 4 of 28

julius
Pencil

What’s special about SVMs?

max
α

m∑
i=1

αi −
1
2

m∑
i=1

m∑
i=1

αiαjyiyj(xi · xj) (1)

• This dot product is basically just how much xi looks like xj. Can we generalize
that?

• Kernels!

Machine Learning: Chenhao Tan | Boulder | 5 of 28

julius
Pencil

julius
Pencil

What’s special about SVMs?

max
α

m∑
i=1

αi −
1
2

m∑
i=1

m∑
i=1

αiαjyiyj(xi · xj) (1)

• This dot product is basically just how much xi looks like xj. Can we generalize
that?

• Kernels!

Machine Learning: Chenhao Tan | Boulder | 5 of 28

What’s special about SVMs?

max
α

m∑
i=1

αi −
1
2

m∑
i=1

m∑
i=1

αiαjyiyj(xi · xj) (1)

• This dot product is basically just how much xi looks like xj. Can we generalize
that?

• Kernels!

Machine Learning: Chenhao Tan | Boulder | 5 of 28

julius
Pencil

What’s a kernel?

• A function K : X × X 7→ R is a kernel over X .
• This is equivalent to taking the dot product 〈φ(x1), φ(x2)〉 for some mapping
• Mercer’s Theorem: So long as the function is continuous and symmetric, then

K admits an expansion of the form

K(x, x′) =
∞∑

n=0

anφn(x)φn(x′) (2)

• The computational cost is just in computing the kernel

Machine Learning: Chenhao Tan | Boulder | 6 of 28

julius
Pencil

What’s a kernel?

• A function K : X × X 7→ R is a kernel over X .
• This is equivalent to taking the dot product 〈φ(x1), φ(x2)〉 for some mapping
• Mercer’s Theorem: So long as the function is continuous and symmetric, then

K admits an expansion of the form

K(x, x′) =
∞∑

n=0

anφn(x)φn(x′) (2)

• The computational cost is just in computing the kernel

Machine Learning: Chenhao Tan | Boulder | 6 of 28

Kernel Matrix

The important property of the kernel matrix K = [K(xi, xj)]ij ∈ Rm×m is symmetric
positive semidefinite.

KT = K

∀x, xTKx ≥ 0

Also known as Gram matrix.

Machine Learning: Chenhao Tan | Boulder | 7 of 28

julius
Pencil

Kernel Matrix

The important property of the kernel matrix K = [K(xi, xj)]ij ∈ Rm×m is symmetric
positive semidefinite.

KT = K

∀x, xTKx ≥ 0

Also known as Gram matrix.

Machine Learning: Chenhao Tan | Boulder | 7 of 28

Kernel Matrix

The important property of the kernel matrix K = [K(xi, xj)]ij ∈ Rm×m is symmetric
positive semidefinite.

KT = K

∀x, xTKx ≥ 0

Also known as Gram matrix.

Machine Learning: Chenhao Tan | Boulder | 7 of 28

julius
Pencil

Kernel Matrix

The important property of the kernel matrix K = [K(xi, xj)]ij ∈ Rm×m is symmetric
positive semidefinite.

KT = K

∀x, xTKx ≥ 0

Also known as Gram matrix.

Machine Learning: Chenhao Tan | Boulder | 7 of 28

julius
Pencil

Polynomial Kernel

K(x, x′) = (x · x′ + c)d (3)

When d = 2, c = 1:

Machine Learning: Chenhao Tan | Boulder | 8 of 28

julius
Pencil

Polynomial Kernel

K(x, x′) = (x · x′ + c)d (3)

When d = 2, c = 1:

Machine Learning: Chenhao Tan | Boulder | 8 of 28

julius
Pencil

Gaussian Kernel

K(x, x′) = exp−‖x
′ − x‖2

2σ2 (4)

which can be rewritten as

K(x, x′) =
∑

n

(x · x′)n

σnn!
(5)

(All polynomials!)

Machine Learning: Chenhao Tan | Boulder | 9 of 28

julius
Pencil

Gaussian Kernel

K(x, x′) = exp−‖x
′ − x‖2

2σ2 (4)

which can be rewritten as

K(x, x′) =
∑

n

(x · x′)n

σnn!
(5)

(All polynomials!)

Machine Learning: Chenhao Tan | Boulder | 9 of 28

julius
Pencil

Gaussian Kernel

K(x, x′) = exp−‖x
′ − x‖2

2σ2 (4)

which can be rewritten as

K(x, x′) =
∑

n

(x · x′)n

σnn!
(5)

(All polynomials!)

Machine Learning: Chenhao Tan | Boulder | 9 of 28

Tree Kernels

• Sometimes we have example x that are hard to express as vectors
• For example sentences “a dog” and “a cat”: internal syntax structure

3/5 structures match, so tree kernel returns .6

Machine Learning: Chenhao Tan | Boulder | 10 of 28

julius
Pencil

Tree Kernels

• Sometimes we have example x that are hard to express as vectors
• For example sentences “a dog” and “a cat”: internal syntax structure

3/5 structures match, so tree kernel returns .6

Machine Learning: Chenhao Tan | Boulder | 10 of 28

Tree Kernels

• Sometimes we have example x that are hard to express as vectors
• For example sentences “a dog” and “a cat”: internal syntax structure

3/5 structures match, so tree kernel returns .6

Machine Learning: Chenhao Tan | Boulder | 10 of 28

What does this do to learnability?

• Kernelized hypothesis spaces are obviously more complicated
• What does this do to complexity?

Machine Learning: Chenhao Tan | Boulder | 11 of 28

How does it affect optimization

• Replace all dot product with kernel evaluations K(x1, x2)

• Makes computation more expensive, overall structure is the same
• Try linear first!

Machine Learning: Chenhao Tan | Boulder | 12 of 28

Examples

Outline

Examples

Machine Learning: Chenhao Tan | Boulder | 13 of 28

Examples

Kernelized SVM

X, Y = read_data (" ex8a . t x t ")
c l f = svm .SVC(kerne l=kk , degree=dd , gamma=gg)
c l f . f i t (X , Y)

Machine Learning: Chenhao Tan | Boulder | 14 of 28

Examples

Linear Kernel Doesn’t Work

Machine Learning: Chenhao Tan | Boulder | 15 of 28

Examples

Polynomial Kernel

K(x, x′) = (x · x′ + c)d (6)

When d = 2:

Machine Learning: Chenhao Tan | Boulder | 16 of 28

Examples

Polynomial Kernel d = 1, c = 5

Machine Learning: Chenhao Tan | Boulder | 17 of 28

Examples

Polynomial Kernel d = 2, c = 5

Machine Learning: Chenhao Tan | Boulder | 18 of 28

Examples

Polynomial Kernel d = 3, c = 5

Machine Learning: Chenhao Tan | Boulder | 19 of 28

Examples

Gaussian Kernel

K(x, x′) = exp
(
γ
∥∥x′ − x

∥∥2
)

(7)

Machine Learning: Chenhao Tan | Boulder | 20 of 28

Examples

RBF Kernel γ = 2

Machine Learning: Chenhao Tan | Boulder | 21 of 28

Examples

RBF Kernel γ = 100

Machine Learning: Chenhao Tan | Boulder | 22 of 28

Examples

RBF Kernel γ = 1

Machine Learning: Chenhao Tan | Boulder | 23 of 28

Examples

RBF Kernel γ = 10

Machine Learning: Chenhao Tan | Boulder | 24 of 28

Examples

RBF Kernel γ = 100

Machine Learning: Chenhao Tan | Boulder | 25 of 28

Examples

RBF Kernel γ = 1000

Machine Learning: Chenhao Tan | Boulder | 26 of 28

Examples

Be careful!

• Which has the lowest training error?
• Which one would generalize best?

Machine Learning: Chenhao Tan | Boulder | 27 of 28

Examples

Recap

• This completes our discussion of SVMs
• Workhorse method of machine learning
• Flexible, fast, effective

• Kernels: applicable to wide range of data, inner product trick keeps method
simple

Machine Learning: Chenhao Tan | Boulder | 28 of 28

julius
Pencil

Examples

Recap

• This completes our discussion of SVMs
• Workhorse method of machine learning
• Flexible, fast, effective
• Kernels: applicable to wide range of data, inner product trick keeps method

simple

Machine Learning: Chenhao Tan | Boulder | 28 of 28

	Examples

