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Outline

Feature engineering
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Feature Engineering

Republican nominee
George Bush said he felt
nervous as he voted
today in his adopted
home state of Texas,
where he ended...

—» (15,3.2,-5.1,...,4.2)

— (1,0,0,0,5,0,9.3,1
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Brainstorming

What are features useful for sentiment analysis?

Top critical review
See all 2,023 critical reviews »

15,029 people found this helpful
W Angle is wrong
By Jim Anderson on August 1, 2012

| tried the banana slicer and found it unacceptable. As shown in the
picture, the slicer is curved from left to right. All of my bananas are
bent the other way.
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What are features useful for sentiment analysis?
Unigram
Bigram
Normalizing options
Part-of-speech tagging
Parse-tree related features
Negation related features
Additional resources
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Sarcasm detection

“Trees died for this book?” (book)
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Sarcasm detection

“Trees died for this book?” (book)

find high-frequency words and content words
replace content words with “CW”
extract patterns, e.g., “does not CW much about CW”

[Tsur et al., 2010]
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More examples: Which one will be retweeted more?

cactus_music cactus_music
@cactus_music @cactus_music

Food trucks are the epitome of I know at some point you’ve have
small independently owned been saved from hunger by our
LOCAL businesses! Help keep rolling food trucks friends. Let’s
them going! Sign the petition help support them! bit.ly/P6GYCq

bit.ly/P6GYCq

[Tan et al., 2014]
https://chenhaot.com/papers/wording-for-propagation.html
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Outline

Revisiting Logistic Regression
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Revisiting Logistic Regression

1
P(Y=0[x,p3)= 1+exp[5o+zi6ixi]
P(Y=1|x,B) = P RPN

~ 14exp[fo+ Y, BiXi]
L ==Y logP(V | x1), B)

J
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Revisiting Logistic Regression

Transformation on x (we map class labels from {0, 1} to {1,2}):

Li=p8xi=1,2
expl;

— 1 =12
Zce{l,Q} exp e

0; =

Objective function (using cross entropy — >, p;log ¢;):

L, ¥) ==Y _PeY =1)logPG:i=1]xY,8) + P(yV) = 0)log P(y; = 0 | X;)

J
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Logistic Regression as a Single-layer Neural Network

:252: Linear Softmax
x1
X2 A 0]
153 02
Xd
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Logistic Regression as a Single-layer Neural Network

Input Single
layer Layer
X1
X2 01
02
Xd
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Outline

Feed Forward Networks
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Deep Neural networks

A two-layer example (one hidden layer)

Input Hidden Output
x|
X2 01
02
Xd
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Deep Neural networks

More layers:
Input Hidden 1 Hidden 2 Hidden 3 Output
X1
X2 o1
03
Xd
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Forward propagation algorithm

How do we make predictions based on a multi-layer neural network?
Store the biases for layer [ in b!, weight matrix in W’

w! b! W2, b? w3, b3 w4, b*
X1
X2 o1
02
Xd
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Forward propagation algorithm

Suppose your network has L layers
Make a prediction based on text point x
1: Initialize a® = x
2: for/=1to Ldo
3 7l = Wla!=! 4 b’
4: a = g(7)
5: end for
6: The prediction j is simply a*
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Nonlinearity

What happens if there is no nonlinearity?
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Nonlinearity

What happens if there is no nonlinearity?
Linear combinations of linear combinations are still linear combinations.
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Neural networks in a nutshell
Training data Syin = {(x,y)}
Network architecture (model)

Loss function (objective function)

Learning (next lecture)
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Nonlinearity Options

Sigmoid
1

i) = 1 + exp(x)

tanh
_exp(x) — exp(—x)

fl) = exp(x) + exp(—x)

ReLU (rectified linear unit)
£(x) = max(0,x)

softmax
exp(x)

> exp(xi)

https://keras.io/activations/
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Nonlinearity Options

/
Pevceptron Q — e Sigwoid

,’/)7 |
TanH / s ReLu
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Loss Function Options
/> loss

> =)

i

Zb’i — il
i

/1 loss

Cross entropy

—> yilogJ;
Hinge loss (more on this during SVM)

maX(O, 1 - )))A’)

https://keras.io/losses/
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A Perceptron Example

X = (xlaxz)ay :f(xlax2)

b
X1 0]

X2
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A Perceptron Example

X = (xlaxz)ay :f(xlax2)

b
X1 01

X2

We consider a simple activation function
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A Perceptron Example

Simple Example: Can we learn OR?

X1 01 01
X3 0 0 11
y=x1Vxp |0 1 1 1
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A Perceptron Example

Simple Example: Can we learn OR?

X1 01 01
X 00 11
y=x1Vx |0 1 1 1
w=(1,1),b=-0.5
b
X1 01
%)
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A Perceptron Example

Simple Example: Can we learn AND?

X1 01 01
X3 0 0 11
y=x1Axp |0 0 0 1
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A Perceptron Example

Simple Example: Can we learn AND?

X1 01 01
X 00 11
y=x1Ax2|0 0 0 1
w=(1,1),b=—1.5
b
X1 01
%)
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A Perceptron Example

Simple Example: Can we learn NAND?

X1 01 01
X2 0011
y=-(x1Ax) |1 0 0 0
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A Perceptron Example

Simple Example: Can we learn NAND?

X1 01 0 1
X 0 0 1 1
y=-(x1Ax) |1 0 0 0

w=(-1,-1),b=0.5
b
X1 01

X2
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A Perceptron Example

Simple Example: Can we learn XOR?

X1 01 0 1
X 0 0 1 1
X1 XOR x |0 1 1 O
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A Perceptron Example

Simple Example: Can we learn XOR?

X1 01 0 1
X 0 0 1 1
X1 XOR x |0 1 1 O

NOPE!
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A Perceptron Example

Simple Example: Can we learn XOR?

X1 01 01
X 0011
X1 XOR x |0 1 1 O
NOPE!
But why?
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A Perceptron Example

Simple Example: Can we learn XOR?

X1 01 01
X 0011
X1 XOR x |0 1 1 O
NOPE!
But why?

The single-layer perceptron is just a linear classifier, and can only learn things that
are linearly separable.
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A Perceptron Example

Simple Example: Can we learn XOR?

X1 01 01
X 0011
X1 XOR x |0 1 1 O
NOPE!
But why?

The single-layer perceptron is just a linear classifier, and can only learn things that
are linearly separable.
How can we fix this?
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A Perceptron Example

Increase the number of layers.

X1 01 0 1
X 00 1 1
X1 XORx» |0 1 1 0
b b
1 1 -0.5
le b1:
X1 h 01 {—1 —1:|7 |:1.5]
1
2 __ 2 _
“ " W2 = M,b — 15
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General Expressiveness of Neural Networks

Neural networks with a single hidden layer can approximate any measurable
functions [Hornik et al., 1989, Cybenko, 1989].
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Outline

Layers for Structured Data
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Structured data

Spatial information

https://www.reddit.com/r/aww/comments/6ip2la/before_and_
after_she_was_told_she_was_a_good_girl/
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Convolutional Layers

Sharing parameters across patches
input image
or input feature map

p—
— -

output feature maps

T
-

https://github.com/davidstutz/latex—-resources/blob/master/
tikz—-convolutional—-layer/convolutional-layer.tex
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Structured data

Sequential information

“My words fly up, my thoughts remain below: Words without thoughts never to
heaven go.”

—Hamlet
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Structured data

Sequential information

“My words fly up, my thoughts remain below: Words without thoughts never to
heaven go.”

—Hamlet
language
activity history
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Structured data

Sequential information

“My words fly up, my thoughts remain below: Words without thoughts never to
heaven go.”

—Hamlet
language
activity history

x=(xp,...,x7)
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Recurrent Layers

Sharing parameters along a sequence

hy :f(xtv ht—l)
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Recurrent Layers

Sharing parameters along a sequence

hy :f(xm ht—l)

Long short-term memory
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What is missing?

How to find good weights?
How to make the model work (regularization, architecture, etc)?
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