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Abstract

Recent efforts to build autonomous Al scientists
assume that more automation leads to faster scien-
tific progress. This view is fundamentally flawed.
Science is not purely an intelligence problem but
aresource allocation problem: deciding what mat-
ters among infinite possibilities with limited time,
attention, and funding. These allocation deci-
sions cannot be delegated to machines because
they are inherently value-laden and require hu-
man accountability. We propose that as Al takes
over production tasks, the role of scientists will
shift toward selection (choosing what to pursue)
and evaluation (assessing quality and validity).
Technical advances must support these roles, not
just automate production. We outline principles
for building tools that augment human judgment,
scale evaluation capacity, and incentivize wise se-
lection over mere output volume. We conclude
with calls to action for the machine learning com-
munity to shape Al development for meaningful
and accountable scientific progress.

1. Introduction

Science is not inherently valuable (Kitcher, 2001; Douglas,
2009). Most species on earth assign no value to scientific
discoveries: a tree does not prioritize climate research, and
a bacterium does not seek to understand evolution. What
we choose to study, what we consider an important problem,
and what we deem a breakthrough all reflect human values,
priorities, and needs (Longino, 1990; Kuhn, 1962). Without
human judgment, discovery loses its meaning, its purpose,
and its worth.

Yet recent efforts to build “Al scientists” often miss this fun-
damental point. Multiple labs are racing to develop systems
that autonomously generate hypotheses, run experiments,
and write papers (Lu et al., 2024). The implicit assumption
is that more automation equals faster progress. But if sci-
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ence derives its value from human judgment, can we truly
automate it away?

Consider NeurIPS submissions as a case study (Figure 1).
From 2013 to 2025, submissions grew from 1,400 to over
21,000: a 15-fold increase in just 12 years. Did machine
learning progress at the same rate? Can we automate sci-
entific progress by producing more papers? And without
human judgment to assess importance and validity, what
makes any of these discoveries valuable? The evidence sug-
gests that while there have been remarkable breakthroughs,
much of the increased output consists of incremental work
(Chu & Evans, 2021; Park et al., 2023). More production
has not meant proportionally more progress (known as the
“production-progress” paradox).

This pattern reveals a deeper issue with how we think about
automation in science. Al excels when tasks have well-
defined inputs, outputs, and success metrics. Improving
algorithm efficiency is one such example: given a specifi-
cation of input and output, the goal is clear and progress is
measurable. Science as a whole resists this pattern. The goal
of science is not to produce papers or even discoveries in
isolation; it is to advance human understanding in directions
that humans find meaningful. This goal cannot be specified
in advance because what counts as “meaningful” depends on
context, values, and the evolving state of knowledge itself.

We believe the answer to whether Al can replace human sci-
entists is a clear “No” as long as humanity prevails. Al will
not replace human scientists; its real potential lies in reshap-
ing how science is done. As Al expands the search space
and takes over routine production tasks, the role of scientists
will shift toward selection and evaluation. This shift is not a
retreat; instead it reveals what was always essential about
the scientific role, now brought into sharper focus by the
contrast with what machines can do. As Tukey put it, “Far
better an approximate answer to the right question, which
is often vague, than an exact answer to the wrong question,
which can always be made precise” (Tukey, 1962).

To look beyond the mirage of the “autonomous Al scien-
tist” and reimagine how science moves forward, we make
the case with three key arguments. First, science is fun-
damentally about resource allocation, not just automation
(Section 2). Second, accountability in selection and eval-
uation is what separates science from Al slop (Section 3).
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Figure 1. Is scientific progress correlated with the rate of production?

Third, technical advances must support selection and evalu-
ation, not just production (Section 5). We then discuss the
broader ecosystem changes required (Section 6) and address
common counterarguments (Section 7) before concluding
with calls to action for the machine learning community.
Our central claim is that the bottleneck in science is not
only intelligence or production capacity, but also human
judgment and attention. Al can help with the former but
cannot substitute for the latter.

2. Science is About Resource Allocation, Not
Just Automation

To see why the idea of autonomous Al scientists is a mirage,
we need to reframe science as a problem of resource alloca-
tion rather than pure intelligence. Al leaders typically por-
tray science as an intelligence problem: build smart enough
Al, and breakthroughs follow. However, this is unlikely
to be the case. Even if there are genuine breakthroughs in
millions of papers that Al generates, scientists may never
identify and recognize them given their limited attention.
Moreover, Al scientists can be costly. Computational re-
search already consumes vast amounts of compute, but many
disciplines also depend on resource-intensive real-world ex-
periments, from biology labs to climate fieldwork. Al does
not make those cheaper; instead, it risks multiplying the
burden by generating ever more hypotheses that require test-
ing. As Kapoor & Narayanan (2024) argue, this is precisely
because it creates more work for the resource-constrained
scientific process (again, the production-progress paradox).

The production-progress paradox deserves closer examina-
tion. Over the past several decades, the number of scientific
publications has grown exponentially, yet measures of trans-
formative progress have remained flat or declined. More re-
searchers are producing more papers, but paradigm-shifting

discoveries have not increased proportionally. This pattern
suggests that the binding constraint on scientific progress is
not the rate of paper production but something else entirely:
the capacity to identify, validate, and build upon the ideas
that matter.

But the real issue is not just the expense. At its core, science
is a problem of resource allocation: deciding what matters
among infinite possibilities with limited time, attention, and
funding. Every choice reflects priorities at multiple levels:
funding agencies choose which proposals to fund, scien-
tists choose which idea to pursue, which hypothesis to test,
which experiments to run, and which papers to read or write.
These decisions form a nested hierarchy of resource alloca-
tion, each level constrained by the decisions above it and
constraining the decisions below.

Consider the full scope of resource allocation in science.
At the macro level, societies decide how much to invest
in research versus other priorities, and which broad areas
deserve emphasis. At the institutional level, universities and
funding agencies distribute resources across fields and in-
vestigators. At the lab level, principal investigators allocate
budgets and personnel across projects. At the individual
level, scientists decide how to spend their hours and atten-
tion. Each of these decisions involves tradeoffs that cannot
be optimized algorithmically because the objective function
itself is contested. Should we prioritize basic research or
applied? Incremental advances or risky bets? Problems with
clear metrics or those with diffuse importance?

These choices cannot be delegated to machines. They are in-
herently social and value-laden. What makes a problem “im-
portant” depends on personal goals, ethical considerations,
and collective priorities. A problem might be important be-
cause it affects many people, because it challenges existing
theory, because it opens new methodological possibilities,
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or because it resonates with cultural concerns. These criteria
often conflict, and reasonable people disagree about their
relative weight. Even if Al becomes effective at making
some of these choices, it cannot be held accountable for
those choices. Accountability requires human judgment and
ownership.

The value-laden nature of scientific priorities becomes clear
when we consider historical examples. The decision to prior-
itize cancer research over other diseases reflects judgments
about suffering, fear, and political salience (Mukherjee,
2010; Proctor, 1995). The choice to fund particle physics at
enormous expense reflects beliefs about fundamental knowl-
edge and national prestige (Kevles, 1995; Weinberg, 1992).
The recent surge in Al research reflects both commercial
incentives and intellectual excitement. None of these alloca-
tions are objectively correct; they reflect human values that
shift over time and vary across communities.

This resource allocation perspective points to two key roles:
selector (making resource allocation decisions) and evalua-
tor (gathering information to inform those decisions). As Al
takes over more production tasks, these become the central
responsibilities of scientists. We will need new infrastruc-
ture to support these roles. The selector role is not merely
choosing among pre-defined options but actively shaping
what options exist by framing problems, defining success
criteria, and setting research agendas. The evaluator role is
not merely checking boxes but exercising judgment about
quality, significance, and credibility under uncertainty.

A Simple Model to illustrate the importance of selection.
To see why selection becomes more valuable as production
scales, consider a simple model. Suppose Al systems pro-
duce N scientific outputs (papers, hypotheses, experimental
results), each with value v; drawn independently from a
distribution with mean p. Scientists have limited attention:
they can only read, use, and build upon K outputs, where
K < N. Define welfare W as the total value of outputs
that scientists actually consume.

Without effective selection, scientists sample K outputs es-
sentially at random. Expected welfare is simply Wiandom =
K - u, which does not depend on N. Producing more outputs
does not help if scientists cannot identify the good ones.

With effective selection and evaluation, scientists can iden-
tify and consume the top K outputs by value. The expected
welfare Wielecreq €quals the sum of the top K order statis-
tics, which grows as N increases. For instance, if values
follow a uniform distribution on [0, 1], then Wigjected =
K-(1- ﬁ), approaching K as N — oo (see Ap-
pendix A for derivation).

The gap Wietected — Wrandom grows with N: as Al produces
more, the value of selection increases. This formalizes the
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Figure 2. The evolving roles of scientists as Al takes over produc-
tion tasks. Human scientists shift toward selection (choosing what
to pursue) and evaluation (assessing quality and validity), while
Al handles generation and execution.

intuition that scaling production without scaling evaluation
yields diminishing returns, while investing in selection and
evaluation allows welfare to grow with the expanding pool
of possibilities. The bottleneck is not production but the
capacity to identify what matters.

3. Accountability in Selection and Evaluation
is What Separates Science from Al Slop

If resource allocation is the bottleneck, then accountabil-
ity is the principle that keeps those allocations meaningful.
That is why selection and evaluation will become the sci-
entist’s defining roles. Next we explain these roles and the
accountability requirement in detail.

The Selector Role. With Al scientists handling many pro-
duction tasks, human scientists can dedicate more effort to
selection throughout the research process. This includes
choosing among research ideas generated by Al, deciding
which hypotheses to pursue from those identified through
literature, data, or simulation, and selecting implementa-
tion strategies for promising directions. A key point is that
selection is not a one-time decision at the start, but a con-
tinuous process of judgment as research unfolds. Which
directions show promise? Which should be abandoned?
Human intuition, values, and priorities are critical in these
decisions when resources are limited. This applies not only
to advancing human understanding, but even to seemingly
clear goals like curing cancer, as we still cannot test every
possible clinical trial.

The selector role requires a form of expertise that differs
from traditional scientific training. It demands broad knowl-
edge to recognize connections across fields, taste to distin-
guish promising ideas from superficially attractive ones, and
courage to pursue unconventional directions. While expe-
rience helps develop these capacities, history shows that
junior researchers often make the most significant break-
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throughs precisely because they are not bound by conven-
tional wisdom. What matters is not seniority but the quality
of deliberation about resource allocation. As selection be-
comes central to scientific work, all researchers must learn
to contribute to this deliberation: articulating why certain
directions matter, engaging with competing priorities, and
building shared understanding of what constitutes impor-
tant work. This is fundamentally a collective process that
requires communication and collaboration.

The Evaluator Role. As Al generates more hypotheses,
experimental plans, and code, scientists must rigorously
evaluate these outputs. This means checking hypotheses for
novelty, importance, and feasibility, detecting methodolog-
ical flaws in Al-designed experiments, catching errors in
Al-written code before they propagate, and assessing results
before they cascade through the literature. This evaluation
challenge is an instantiation of the scalable oversight prob-
lem (Amodei et al., 2016; Bowman et al., 2022): how do
we maintain rigorous quality control when Al dramatically
increases the volume of scientific output? We already see
this challenge in the replication crisis (Open Science Col-
laboration, 2015). As Al accelerates generation, evaluation
becomes increasingly critical.

Evaluation in science is more complex than verification in
engineering. When an Al system generates a hypothesis,
the question is not simply whether it is true but whether it is
interesting, whether the evidence is sufficient, whether alter-
native explanations have been adequately considered, and
whether the framing advances or obscures understanding.
These judgments require contextual knowledge that extends
beyond the immediate claim to encompass the state of the
field, the reliability of methods, and the sociology of how
scientific claims are received and built upon.

The challenge of evaluation compounds as Al-generated
content proliferates. When every lab can generate thousands
of hypotheses, the evaluation bottleneck tightens further.
Peer review already struggles to keep pace with human-
generated submissions; Al acceleration will stress the sys-
tem further. This suggests that evaluation capacity may
become the limiting factor in scientific progress, making
investment in evaluation infrastructure as important as in-
vestment in generation capabilities.

Selection and evaluation happen at every step in the iterative
process of science. In order for selection to work, scien-
tists must “believe in” the idea. In order for evaluation to
work, scientists need to take responsibility for publishing
the results. You cannot hide behind “the Al said so.” This
accountability is what distinguishes the future of science
from a world of Al-generated noise. The Virtual Lab of Al
agents (?) is a good example, where scientists determine
the goal and work with Al agents, and thorough validation

culminates in a publication in Nature.

The Accountability Requirement. Accountability means
that someone can be held responsible for decisions and
their consequences. In science, this responsibility oper-
ates at multiple levels: researchers are accountable to their
peers through peer review, to the public through the expecta-
tion that science serves societal needs, and to the historical
record through the requirement that claims be replicable and
honestly reported. Al systems cannot bear this responsibil-
ity because they lack the moral agency and social standing
required for accountability. An Al cannot be embarrassed
by a retraction, motivated by reputation concerns, or subject
to professional sanctions for misconduct.

This is not merely a practical limitation but a conceptual
one. Accountability requires that someone stake their credi-
bility on a claim, which means the claim carries information
about the claimant’s judgment and competence. When a
respected scientist endorses a finding, that endorsement pro-
vides information beyond the finding itself. It signals that
someone with relevant expertise has judged the work wor-
thy of their reputation. This signaling function cannot be
replicated by an Al system, regardless of how accurate its
outputs become.

4. Revisiting the Production-Progress Paradox

The emphasis on selection and evaluation could address the
production-progress paradox. Progress in science comes
from deep comprehension, not from producing more papers.
When scientists invest effort in careful selection and think
deeply about which directions matter and why, they build
genuine understanding of the problem space. When they
rigorously evaluate results and scrutinize methodology, as-
sessing validity and connecting findings to broader context,
they deepen their grasp of what the results actually mean.

An analogy is the “forklift at the gym” problem: if you want
to build strength, automating the lifting defeats the purpose.
Similarly, automating away the process of understanding
defeats the purpose of science itself. Our vision avoids this
trap through a specific division of labor. Al eases generation
and production, expanding the search space exponentially
and bringing more possibilities to examine. Humans handle
judgment and accountability, deciding what matters, evalu-
ating quality, and taking ownership of those choices. This is
using the forklift to bring more weights to the gym, not to
lift them for you.

The forklift analogy illuminates why naive automation can
backfire. If the goal were simply to move weights, the fork-
lift would be an unqualified improvement. But the goal is to
build strength, which requires the effortful process of lifting.
Similarly, if the goal of science were simply to produce



The Mirage of Autonomous Al Scientists

papers, Al automation would be unambiguously beneficial.
But the goal is to build understanding, which requires the ef-
fortful process of grappling with ideas, evaluating evidence,
and integrating findings into a coherent worldview.

This suggests a principle for beneficial Al deployment in sci-
ence: automate tasks that are instrumental to understanding,
not constitutive of it. Writing boilerplate code is instrumen-
tal; deciding what code to write is constitutive. Running
statistical tests is instrumental; interpreting what the results
mean is constitutive. Searching the literature is instrumental;
synthesizing it into a novel perspective is constitutive. The
challenge lies in drawing this boundary correctly, which
itself requires human judgment about what activities con-
tribute to genuine understanding.

The production-progress paradox also reveals a coordina-
tion problem. Individual scientists face incentives to publish
more, but the collective result of everyone publishing more
is not more progress but more noise. This is a classic tragedy
of the commons: the resource being depleted is collective
attention. Al that accelerates individual production without
addressing collective evaluation will worsen this tragedy.
The solution requires coordinating on new norms and infras-
tructure that value evaluation as much as production.

5. Technical Advances Must Support Selection
and Evaluation, Not Just Production

Current Al research focuses heavily on automating pro-
duction with better models, faster inference, and more au-
tonomous systems. But if scientists’ essential role is shifting
to selection and evaluation, we also need tools and systems
that help scientists perform these new roles effectively. The
advances must achieve three goals:

* Augment selection. Tools should enhance scientists’
ability to select, while keeping humans in decision-
making roles.

¢ Scale up evaluation. As Al eases production, infras-
tructure must scale up human evaluation capabilities
to match.

* Incentivize wise selection over mere production.
Create systems that reward good judgment and careful
evaluation, not just output volume.

These goals represent a significant reorientation of Al de-
velopment for science. Current benchmarks and metrics
emphasize generation: how many papers can a system pro-
duce, how novel are its hypotheses, how quickly can it run
experiments. Future metrics must emphasize the quality
of human-Al collaboration: how effectively do tools help
scientists identify promising directions, how reliably do

they flag potential problems, how well do they support the
deliberative processes that lead to good judgment.

5.1. Augmenting Selection

Tools for selection should expand the space of possibilities
that scientists can consider while preserving their authority
to choose among them. Recent work on Al-assisted research
ideation points toward promising directions (Wang et al.,
2024; Baek et al., 2024; Si et al., 2024; Zhou et al., 2024).
Al systems can identify surprising connections across dis-
tant literatures, surface neglected problems that combine
tractability with potential impact, and generate diverse re-
search directions rather than single recommendations. The
key is designing these systems to enhance human explo-
ration rather than constrain it to algorithmic preferences.

More ambitiously, selection tools could help scientists artic-
ulate and refine their own values and priorities. What do you
actually care about? What would change your mind? Al
systems that engage scientists in structured reflection about
their goals may prove more valuable than systems that sim-
ply recommend directions. Tools that generate adversarial
hypotheses, challenge assumptions, or surface inconvenient
evidence could strengthen selection by forcing deeper en-
gagement with alternatives. The most transformative tools
may be those that help research communities deliberate col-
lectively about priorities, aggregating diverse perspectives
into shared research agendas.

However, designing selection tools that preserve human
agency is difficult. Automation bias may lead scientists
to over-rely on Al suggestions, gradually atrophying their
own judgment. Algorithmic monocultures could homog-
enize research directions if many scientists use the same
tools (Kleinberg & Raghavan, 2021). The serendipity that
drives unexpected breakthroughs may be lost if Al systems
optimize for expected value. These challenges suggest that
selection tools must be designed not just for accuracy but
for maintaining the diversity, independence, and active en-
gagement that make scientific communities effective.

5.2. Scaling Evaluation

As Al-generated content proliferates, evaluation capacity
must scale accordingly. This requires both better tools for
individual evaluation and better infrastructure for collec-
tive evaluation. Individual tools might include automated
checks for common errors, comparison with existing liter-
ature to assess novelty, and structured prompts that guide
systematic assessment. Collective infrastructure might in-
clude platforms for distributed peer review, mechanisms for
aggregating evaluations across many reviewers, and systems
that track the reliability of sources over time.

The scaling challenge is profound. If Al increases the rate
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of research production by a factor of 1000, whether papers,
code, experimental results, or datasets, evaluation capac-
ity must increase correspondingly or the system will be
overwhelmed. This cannot be achieved simply by asking
scientists to evaluate faster; it requires fundamentally new
approaches to evaluation that leverage Al assistance while
preserving human judgment at critical points.

One promising direction is tiered evaluation, where Al sys-
tems perform initial screening to filter out clearly flawed
or uninteresting work, while human experts focus their at-
tention on the most promising candidates. This approach
mirrors how search engines work: algorithmic ranking han-
dles the bulk of filtering, while human attention is reserved
for the top results. The challenge is ensuring that the initial
filtering does not systematically exclude valuable work that
does not fit expected patterns.

5.3. Principles for Tool Design

Several principles should guide the development of tools for
selection and evaluation:

Preserve Human Agency. Tools should present options
and provide information, but leave final decisions to humans.
This means avoiding systems that automatically select direc-
tions or filter out possibilities without human review. Even
when Al recommendations are highly accurate, the process
of considering and deciding builds the judgment that makes
future decisions better. Removing humans from this loop
may increase short-term efficiency at the cost of long-term
capability.

Support Deliberation. Rather than optimizing for speed,
tools should facilitate thoughtful consideration. This might
include mechanisms for recording reasoning, comparing
alternatives, and revisiting past decisions. Deliberation is
where understanding develops; tools that rush this process
sacrifice the cognitive benefits that make selection valuable.
This runs counter to much current Al development, which
optimizes for speed and convenience rather than depth of
engagement.

Enable Collaboration. Selection and evaluation benefit
from multiple perspectives. Tools should support discus-
sion, disagreement, and collective judgment across research
communities. Science is a social process, and the quality
of scientific judgment depends on the quality of scientific
discourse. Tools that isolate researchers may increase indi-
vidual productivity while degrading collective intelligence.

Maintain Accountability. Every decision should have a
clear human owner. Tools should create records of who
made what choices and why, enabling both credit assign-
ment and responsibility tracking. This serves both practical
and epistemic purposes: practically, it ensures someone is
responsible for errors; epistemically, it allows the commu-

nity to calibrate trust based on track records. Anonymous
or automated decisions undermine both functions.

6. The Broader Ecosystem

Looking forward, the future of science requires much more
than better tools. It requires rethinking the entire ecosys-
tem within which scientific work occurs. Here are some
examples:

* Al systems should generate effective hypotheses from
data, literature, and other computational approaches for
human selection. This means moving beyond single-best
recommendations to diverse portfolios of options with
clear explanations of their tradeoffs.

* Automation should handle execution tasks while maintain-
ing accountability for key decisions. This requires clear
interfaces that mark where automated execution ends and
human judgment begins.

* Publication mechanisms need rethinking. Al-run venues
can surface new ideas and workflows, and we need to
understand how they complement existing publication
systems. The current model of peer-reviewed papers may
need to evolve toward more dynamic formats that better
reflect the iterative nature of Al-assisted science.

* Funding mechanisms should allocate resources to encour-
age and reward selection and evaluation capacity. This
might mean funding “evaluation grants” that support rig-
orous assessment of existing work, or creating prizes for
identifying flawed research before it propagates.

* Academic systems need reform to value contribution to
understanding, creating career paths for evaluators and
infrastructure builders. Currently, careers are built on
production metrics; future systems should equally reward
those who improve the quality of collective judgment.

Incentive reform. The most challenging aspect of the
broader ecosystem is incentive reform. Current incentives
strongly favor production over evaluation. Scientists are pro-
moted based on publication counts and citation metrics, not
on the quality of their judgment or their contributions to col-
lective understanding. Funding flows to those who promise
new discoveries, not to those who carefully evaluate existing
claims. These incentives will not change automatically; they
require deliberate reform.

Several mechanisms could help shift incentives toward eval-
uation. Funding agencies could require that a portion of
grant budgets be allocated to replication and evaluation
rather than new production. Journals could weight edito-
rial decisions toward papers that carefully evaluate existing
work rather than simply adding to the pile. Hiring commit-
tees could explicitly value demonstrated skill in evaluation



The Mirage of Autonomous Al Scientists

and selection, treating these as core competencies rather
than service activities.

Technology can also play a role in incentive reform by mak-
ing evaluation contributions more visible and measurable.
Platforms that track who identified important problems early,
who caught errors before publication, and who synthesized
disparate findings into coherent frameworks could provide
the data needed to reward these activities. Currently, these
contributions are largely invisible; making them visible is a
prerequisite for valuing them appropriately.

The goal of incentive reform is not to devalue production but
to properly value the complementary activities of selection
and evaluation. Science needs both generation and curation;
the current imbalance toward generation reflects historical
circumstances in which human generation capacity was the
limiting factor. As Al shifts this constraint, the relative value
of human evaluation and selection increases, and incentive
systems should adjust accordingly.

7. Alternative Views

We address several objections to the framework presented
above.

“Al will eventually develop its own values and priorities.”

This argument assumes that artificial general intelligence
will emerge and develop autonomous goals. Even if this
occurs, it does not solve the fundamental problem: science
serves human purposes. An Al with its own values would be
pursuing its own science for its own reasons, which would
not satisfy the human need for understanding and control
over nature. Moreover, the question of whose values should
guide resource allocation in science is inherently a social
and political question, not a technical one.

The deeper issue is that values in science are not merely
inputs to an optimization process but are themselves discov-
ered and refined through scientific practice. What counts
as an important problem evolves as fields develop. An Al
system that autonomously pursued science based on fixed
values would miss this essential dynamism. And an Al that
adapted its values based on its own criteria would be making
choices that humans have not authorized and cannot oversee.
Either way, the result would not be science in the sense that
serves human purposes.

“Human judgment is biased and slow; AT would be more
objective.” Human judgment is indeed biased, but this is
precisely why accountability matters. When humans make
decisions, they can be questioned, challenged, and held
responsible. When biases are identified, processes can be
reformed. Al systems encode the biases of their training
data and designers, but without the same mechanisms for

accountability and correction. Furthermore, “objectivity” in
science is not about removing human judgment but about
subjecting that judgment to scrutiny through peer review,
replication, and open debate.

The history of science shows that progress often comes
from challenging rather than eliminating subjective judg-
ment. Galileo’s observations were dismissed as subjective
illusions by contemporaries who had different theoretical
commitments. Darwin’s theory was attacked as reflecting
his personal ideology. In each case, progress came not from
removing human judgment but from refining it through de-
bate and evidence. Al systems that bypass this process by
claiming objectivity would short-circuit the mechanisms
through which science corrects itself.

Speed is also not unambiguously desirable. Careful evalua-
tion takes time, and rushing this process leads to errors that
are costly to correct. The replication crisis demonstrates
what happens when the scientific system prioritizes speed
over rigor. Al that further accelerates production without
correspondingly improving evaluation will worsen rather
than solve this problem.

“This framework applies only to some fields.” While
the specific balance between selection, evaluation, and pro-
duction varies across disciplines, the fundamental insight
holds broadly. Even in fields where Al can fully automate
experiments, humans must still decide which experiments
to run and what the results mean. A drug discovered by
Al still requires human judgment about whether to pursue
clinical trials, how to weigh risks and benefits, and how to
allocate limited healthcare resources.

Consider mathematics, sometimes seen as the field most
amenable to Al automation because of its formal nature.
Even here, human judgment determines which theorems are
interesting, which proof strategies are elegant, and which
results warrant publication. A theorem-proving Al might
generate thousands of valid proofs, but mathematicians must
decide which ones advance understanding. The same pattern
holds in experimental sciences: even perfect automation of
data collection and analysis leaves open the questions of
what data to collect and what the analysis means.

“Al-generated ideas are just more noise.”” This concern
is precisely why we emphasize the selector role. Al can
surface possibilities that might otherwise be overlooked
(e.g., the famous move 37 by AlphaGo), thus broadening
the search space. But quantity does not equal quality: only
through human selection and evaluation can those raw out-
puts become meaningful ideas rather than unfiltered noise.
Used appropriately, Al can also make studies more replica-
ble when applied to production tasks (Kapoor & Narayanan,
2024).
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The key is that Al-generated ideas become valuable only
when integrated into a process that includes human selection.
An idea that no one evaluates or pursues is not really an
idea at all; it is just text. The value of Al in idea generation
comes from expanding the range of possibilities that humans
consider, not from bypassing human consideration entirely.
This is why tools for selection are essential complements to
tools for generation.

“Evaluation cannot scale with AI production.” This is
a serious concern but not an argument against the frame-
work; rather, it is an argument for investing in evaluation
infrastructure. Current evaluation capacity is insufficient
even for human-generated content, as evidenced by journal
backlogs and the replication crisis. Al acceleration makes
this problem more urgent but does not change its nature.
The solution is to develop new approaches to evaluation that
leverage Al assistance while preserving human judgment at
critical points, as discussed in Section 5.

The alternative, accepting that evaluation cannot scale, leads
to a world where the scientific literature is flooded with
unchecked Al-generated content. This outcome would be
far worse than the current situation, effectively destroying
the reliability that makes scientific knowledge valuable. The
difficulty of scaling evaluation is real, but the consequences
of failing to do so are severe enough to warrant significant
investment in solutions.

“Incentive structures will never change.” Current incen-
tives that reward publication volume are already under criti-
cism within the scientific community. The pressures created
by Al-generated content may accelerate reform by making
the inadequacy of current metrics more obvious. Funding
agencies, universities, and journals all have reasons to value
quality over quantity, and tools that support selection and
evaluation can help shift incentives by making these contri-
butions more visible and measurable.

Historical precedent suggests that incentive structures can
change when circumstances demand it. The rise of peer re-
view, the development of citation metrics, and the growth of
open access all represented significant shifts in how science
is organized and rewarded. Each of these changes faced
resistance but ultimately prevailed because they served gen-
uine needs. The shift toward valuing evaluation and selec-
tion may follow a similar trajectory, driven by the recogni-
tion that current metrics fail to capture what matters as Al
changes the nature of scientific production.

8. Conclusion

The mirage of the autonomous Al scientist dissolves once
we recognize that science is fundamentally a resource allo-
cation problem, not merely an intelligence problem. Gen-

erating more output does not automatically lead to more
progress; what matters is choosing wisely among infinite
possibilities. We have argued that selection and evaluation
are the essential roles humans must retain, as these require
accountability that cannot be delegated to machines. Techni-
cal development should support rather than replace human
judgment: augmenting selection, scaling evaluation, and
incentivizing wise choices over mere production volume.

This argument has particular relevance for the machine learn-
ing community. Machine learning is itself a science subject
to the dynamics we describe: the explosion of submissions
in machine learning conferences illustrates the production-
progress paradox within our own field. But more impor-
tantly, the tools that ML researchers build will shape how
this transformation unfolds across all of science. The choice
between designing for full automation versus human-Al
collaboration is not abstract; it is made concrete in every
system we build, every benchmark we create, and every
metric we optimize.

We close with concrete calls to action:

For ML researchers building Al for science. Design
systems that augment human judgment rather than bypass
it. This means building tools that present diverse options
with explanations rather than single recommendations, that
support deliberation rather than optimize for speed, and
that maintain clear accountability for decisions. Evaluate
success not by automation metrics but by whether scientists
make better judgments with your tools than without them.

For the ML community as a whole. Confront the
production-progress paradox in our own field. Develop
better metrics that capture scientific contribution rather than
mere output. Create incentives for careful evaluation and
replication. Recognize that the most valuable contributions
may be those that help us identify which of the thousands
of papers actually matter.

For scientific institutions and funding agencies. Invest
in evaluation infrastructure with the same intensity as pro-
duction infrastructure. Fund replication studies, evaluation
tools, and the training of scientists in selection and judg-
ment. Reform incentive structures to reward demonstrated
wisdom, not just prolific output.

The path forward requires recognizing that the bottleneck
in science is human judgment and attention. Al should
support the exercise of that judgment, not replace it. The
autonomous Al scientist is a mirage because science with-
out humans is not science at all. The real opportunity is
human scientists working with Al, combining human judg-
ment with machine capability to accelerate discovery while
preserving accountability. Realizing this opportunity is both
the challenge and the responsibility of our community.
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A. Derivation of Selection Welfare

We derive the expected welfare under selection for the uni-
form distribution case. Suppose N outputs have values
v1,...,VvyN drawn independently from the uniform distribu-
tion on [0, 1]. Let X(;) < X(2) < --- < X() denote the
order statistics.

For the uniform distribution on [0, 1], the expected value of
the k-th order statistic is:
k

E[X k)] = N+l ()
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With effective selection, scientists consume
the top K outputs, i.e., the order statistics
Xy, X(N=1)»- -+ » X(N—K+1)- The expected welfare is:

K-1 K-1 N 7‘]'
VVselected = Z ]E[X(N_J)} = Z m (2)
§=0 Jj=0
1 K—1
— T (V) 3)
7=0
1 K—1
- N1 KN — > 4)
7=0
1 K(K-1)
- <KN _ 2) )
K K—-1
= — N - T
N+1 < 2 ) ©
2N — K +1
T ST "

This can be rewritten as:

K K
Wselected:K'(1_2(N+1)>+2(N+1) (8)

For K < N, this simplifies to:

K

VVselected ~ K- <1 - 2(]V—‘y—1)) (9)

As N — 00, Welected — K, meaning perfect selection
allows scientists to capture nearly the maximum possible
value.

In contrast, without selection, scientists sample K outputs
at random. Since E[v;] = £ for the uniform distribution:

1
VVrandom =K. 5 (10)
The welfare gap is:
1 K K K
Wselected_VVrandom ~ K- (2 - 2(]\[+1)) = E (1 — ]\M)
(11)

This gap approaches % as N grows, demonstrating that the
value of selection increases with the scale of production.
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