The effect of wording on message propagation: *Topic- and author-controlled* natural experiments on Twitter

Chenhao Tan, Lillian Lee, Bo Pang
Cornell University, Google
How to get messages across more effectively?

After 700 years of doing what he was built for, he’ll discover what he was meant for.
What factors determine the success of messages?

Important factors [Milkman and Berger, 2012; Romero et al. 2013; Suh et al. 2010; etc]

- Characteristics of the author, author’s social network
- Message topic
- Message timing
How to get messages across more effectively?

• **Find a good topic** [Guerini et al. 2011]

• **Become influential or find influential users to help spread** [Kempe et al. 2003]
How to get messages across more effectively?

• **Find a good topic** [Guerini et al. 2011]

• **Become influential or find influential users to help spread** [Kempe et al. 2003]

• **Improve the quality of the content**

 – **Image** [Isola et al. 2011]

 – **Wording**

 humor, informative, emphasize certain aspects
Revisit the example: Does wording actually matter?
Revisit the example: Does wording actually matter?

We did a study on predicting when a tweet would be retweeted (this paper cites us). The dominant factor is not what you write, but how many followers you have. Basically, a famous person can write anything and it will be retweeted. An unknown person can write the same tweet and it will be ignored.

Link to paper:
How can we focus on the effect of wording?
Add more control to better understand the effect of wording

• Author control
 – Obama vs. me
• Topic control
 – Presidential election vs. this talk

What if Barack Obama had posted about re-election using a different wording?
e.g. “4 more years to prove that we can!”
The same users post multiple tweets on the same topic

Topic- and author-controlled pairs
Topic- and author-controlled pairs are common!

- 2.4 Million topic- and author-controlled tweet pairs
 - 1.77M differing in more than just spacing
 - 632K whose difference was only spacing
More cleaning up is required for natural experiments!

• **Timing can matter** (thankfully, Twitter doesn’t re-rank posts, but presents strictly in chronological order)
 – The first one may enjoy a first-mover advantage
 – The second one may be preferred as the updated one

• **Number of followers also has complicated effects**
Use identical pairs to find an “ideal” setting

- **Notation**
 - n_1: number of retweets for the first tweet
 - n_2: number of retweets for the second tweet

- **Difference between n_1 and n_2**

$$D = \sum_{0 \leq n_1 < 10} |\hat{E}(n_2|n_1) - n_1|$$
As time lag increases, D decreases as we get more data and then increases.

As number of followers increases, D decreases.

$$D = \sum_{0 \leq n_1 < 10} |\hat{E}(n_2|n_1) - n_1|$$
The ideal setting found through *identical* pairs: users who have more than 5K followers two tweets are posted within 12 hours.
More filtering

• Ideal setting: >5K followers, <12 hours
• Non-trivial textual changes
 – Similarity below median to avoid typos, etc
• Significant changes in retweet numbers
 – Take top 5% and bottom 5% in terms of \(n_2 \) — \(n_1 \)
• Limit the number of pairs by an author to 50

This brings us 11K topic- and author- controlled pairs for natural experiments!
Does wording matter?

Wording does not matter

Humans should not be able to tell which one in a pair was retweeted more

Humans can tell which one in a pair was retweeted more (accuracy > 50%)

Wording matters!
Can humans tell which tweet will be retweeted more?

• Randomly sample 100 pairs
• 20 pairs a task on Amazon Mechanical Turk
• 39 judgments for each pair
Can humans tell which tweet will be retweeted more?

Average accuracy for each labeler: 61.3%

Accuracy of the majority label for each pair: 73%
Predict which tweet will be retweeted more within a pair

- Cross validation experiments: 11K topic- and author-controlled pairs (5-fold cross validation)
- Heldout experiments: 1.8K topic- and author-controlled pairs from a different group of users that have never been used

(Only used once, 6 days before submission!)
Predict which tweet will be retweeted more within a pair

• Features
 – Custom features that we proposed: lexicons, informativeness, language model features, etc (39 features)
 – Bag of words: unigram+bigram (7K features)

• Approach
 – Take the difference between features for two tweets in a pair after linear normalization
 – Logistic regression
Predict which tweet will be retweeted more within a pair

- A strong baseline
 - A classifier to distinguish 10K most retweeted unpaired tweets from 10K least retweeted unpaired tweets
 - Use bag-of-words features, [number of followers and timing]
 - Cross validation accuracy 98.8%
Cross-validation performance: is control necessary?

Accuracy without control

- Best method outperforms the baseline by more than 10%
Cross-validation performance

- Best method outperforms the baseline by more than 10%
- Custom does pretty well by itself, and outperforms average human accuracy
- Adding custom improves bag-of-words

Accuracy without control

Average human accuracy (on a sample of 100 pairs)
Fortunately, same results hold in heldout data

- Best method outperforms the baseline by more than 10%
- Custom does pretty well by itself, and outperforms average human accuracy
- Adding custom improves bag-of-words

Accuracy without control

Average human accuracy (on a sample of 100 pairs)
Should we conform to community norm?

• Train language models using non-paired tweets
• Compute unigram, bigram language model score
 higher score = closer to twitter language
• Test whether more retweeted tweets have a larger score
Be like the community (conformity)

- Train language models using non-paired tweets
- Compute unigram, bigram language model score
 higher score = closer to twitter language
- Test whether more retweeted tweets have a larger score

<table>
<thead>
<tr>
<th>Model</th>
<th>Effective?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter unigram language model</td>
<td>p < 0.001</td>
</tr>
<tr>
<td>Twitter bigram language model</td>
<td>p < 0.001</td>
</tr>
</tbody>
</table>
Should we maintain personal style?

- Train language models using history of each person
- Compute unigram, bigram language model score
 higher score = closer to personal history
- Test whether more retweeted tweets have a larger score
Be true to yourself

- Train language models using history of each person
- Compute unigram, bigram language model score
 higher score = closer to personal history
- Test whether more retweeted tweets have a larger score

<table>
<thead>
<tr>
<th>Language Model</th>
<th>Effective?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal unigram language model</td>
<td>p < 0.001</td>
</tr>
<tr>
<td>Personal bigram language model</td>
<td></td>
</tr>
</tbody>
</table>
Take away

• We used topic- and author-controlled pairs to show that wording matters!
• Average human is not perfect in telling which is better; computers can do better
• Controlling topics and authors can improve predictive performance significantly over an approach without control
Thank you & Questions?

• Data
http://chenhaot.com/pages/wording-for-propagation.html

• Demo
http://chenhaot.com/retweetedmore

• Quiz
http://chenhaot.com/retweetedmore/quiz