# TO EACH HIS OWN: PERSONALIZED CONTENT SELECTION BASED ON TEXT COMPREHENSIBILITY

CHENHAO TAN, EVGENIY GABRILOVICH, BO PANG CORNELL UNIVERSITY, YAHOO! RESEARCH



# Various factors explain users' choices in content consumption

- Topic (personalized search, user modeling etc)
- Beyond Topical Relevance

# MOTIVATION

# Various factors explain users' choices in content consumption

- Topic (personalized search, user modeling etc)
- Beyond Topical Relevance

#### **Text comprehensibility**

- The degree of difficulty of text, e.g. as judged by average sentence length and vocabulary size
- Motivating example

A search on antibiotic resistance:

a physician vs. a patient

### **PAGES ON "ANTIBIOTICS"**

An antibacterial is a compound or substance that kills or slows down the growth of bacteria. The term is often used synonymously with the term antibiotic(s); today, however, with increased knowledge of the causative agents of various infectious diseases, antibiotic(s) has come to denote a broader range of <u>antimicrobial</u> compounds, including <u>antifungal</u> and other compounds.

Antibiotics are medicine that kills bacteria or slows the growth of bacteria. They are used to cure diseases. Antibiotics do not harm people. Penicillin is a popular antibiotic. Antibiotics started to be produced in 1939. Antibiotics can not stop a virus. Antibiotics are not the same thing as antibodies.

Intuitively, we see these texts differ in:

- Complexity of syntax
- Technical terms
- Topic independent vocabulary
- ...

## **CHALLENGES**

Estimate the comprehensibility of text

# Model and predict users' comprehensibility preferences without explicit preference information

- Topic independent
- Topic dependent

#### Improve the ranking in more than one setting

- Web search
- Community question answering

## **CHALLENGES**

Estimate the comprehensibility of text

# Model and predict users' comprehensibility preferences without explicit preference information

- Topic independent
- Topic dependent

#### Improve the ranking in more than one setting

- Web search
- Community question answering

Related work

Characterizing Web Content, User Interests, and Search Behavior by Reading Level and Topic [Kim et al. 2012]

Personalizing web search results by reading level [Collins-Thompson et al. 2011]

### **ESTIMATE TEXT COMPREHENSIBILITY**

#### English Wikipedia VS. Simple English Wikipedia

(40,032 aligned article pairs with the same title)

#### Features

- 6 linguistic readability indexes based on the length of sentences, the syllables of words, etc [CL, G, KFRC, M, M]
- A basic English word list: just 850 unigrams

#### Hard vs. Easy classification with logistic regression

Global threshold: 88.3%

Per-title comparison: 97.4%

### **PAGES ON "ANTIBIOTICS"**

An antibacterial is a compound or substance that kills or slows down the growth of bacteria. The term is often used synonymously with the term antibiotic(s); today, however, with increased knowledge of the causative agents of various infectious diseases, antibiotic(s) has come to denote a broader range of <u>antimicrobial</u> compounds, including <u>antifungal</u> and other compounds.

Regular English Wikipedia

Antibiotics are medicine that kills bacteria or slows the growth of bacteria. They are used to cure diseases. Antibiotics do not harm people. Penicillin is a popular antibiotic. Antibiotics started to be produced in 1939. Antibiotics can not stop a virus. Antibiotics are not the same thing as antibodies.

Simple English Wikipedia

### **ESTIMATE TEXT COMPREHENSIBILITY**

#### English Wikipedia VS. Simple English Wikipedia

(40,032 aligned article pairs with the same title)

#### Features

- 6 linguistic readability indexes based on the length of sentences, the syllables of words, etc [CL, G, KFRC, M, M]
- A basic English word list: just 850 unigrams

#### Hard vs. Easy classification with logistic regression

Global threshold: 88.3%

Per-title comparison: 97.4%

### MODEL USER PREFERENCES: TOPIC INDEPENDENT (BASIC)

#### We get preference pairs for each user

- From click log in web search
- From choosing the best answer in community question answering

### **GENERATE PREFERENCE PAIRS**

### **Click log**

- Three different ways, e.g. click > skip above
- Weight

the closer two search results are, the larger the weight is

#### **Best answer**

- Best > Any other
- Weight
  - 1/#answers

### MODEL USER PREFERENCES: TOPIC INDEPENDENT (BASIC)

We get preference pairs for each user

 $\Omega_u^{pref} = \{ (\langle a_i, b_i \rangle, w_i) \mid a_i \rangle_u \ b_i, \text{ with weight } w_i \}$ 

#### Treat each tuple as a sample

 $P_u$ : the probability that user u prefers harder text

MLE estimation with smoothing

 $P_u = \frac{\# \text{Samples where } u \text{ prefers harder text} + 1}{\# \text{Samples} + 2}$ 

Weighted version

 $P_u = \frac{\#\text{Weighted samples where } u \text{ prefers harder text} + 1}{\#\text{Weighted Samples} + 2}$ 

### MODEL USER PREFERENCES: TOPIC DEPENDENT (TOPICAL)

#### **Topic dependent**

 Topic hierarchy (e.g. Yahoo!'s classifier for queries, or categories in Yahoo! answers)

 $t_2 <_h t_1 \Leftrightarrow t_2$  is a descendant of  $t_1$ 

• Pairwise preferences for a topic *t* and a user *u* 

All the preference pairs in the descendants of t and t

$$\Omega_{u,t}^{pref} = \{ pp_i \in \Omega_u^{pref} | t_i \leq_h t \}$$

### MODEL USER PREFERENCES: TOPIC DEPENDENT (COLLABORATIVE)

#### **Data sparseness**

- Predict comprehensibility preferences for unseen topics
- Collaborative filtering

Maximum margin matrix factorization [Weimer et al. 2007]

$$\sum_{i,j,G_{ij}\neq 0} ||U^T V_{(ij)} - G_{ij}||^2 + ||U||_F + ||V||_F$$

### **COMBINE THE RANKINGS**

R(d): the original topic-relevance-based ranking

 $R_u(d)$ : the ranking in the descending order of the difficulty of the text

 $P_u$ : the probability that user *u* prefers harder text

 $\beta$ : a parameter tuned on a development set

Combined Score:  $V = R(d) + \beta * (2 * P_u - 1) * R_u(d)$ 

### **COMBINE THE RANKINGS**

R(d): the original topic-relevance-based ranking

 $R_u(d)$ : the ranking in the descending order of the difficulty of the text

 $P_u$ : the probability that user *u* prefers harder text

 $\beta$ : a parameter tuned on a development set

Combined Score:  $V = R(d) + \beta * (2 * P_u - 1) * R_u(d)$ 

 $P_u > 0.5 \Rightarrow (2 * P_u - 1) > 0,$ text harder  $R_u(d)$  smaller V smaller final rank higher

### **COMBINE THE RANKINGS**

R(d): the original topic-relevance-based ranking

 $R_u(d)$ : the ranking in the descending order of the difficulty of the text

 $P_u$ : the probability that user *u* prefers harder text

 $\beta$ : a parameter tuned on a development set

Combined Score:  $V = R(d) + \beta * (2 * P_u - 1) * R_u(d)$ 

 $\begin{array}{ll} P_u > 0.5 \rightleftharpoons (2 * P_u - 1) > 0, & P_u < 0.5 \rightleftharpoons (2 * P_u - 1) < 0, \\ \text{text harder} & \text{text easier} \\ R_u(d) \text{ smaller} & R_u(d) \text{ larger} \\ V \text{ smaller} & V \text{ smaller} \\ \text{final rank higher} & \text{final rank higher} \end{array}$ 

## EXPERIMENT ON SEARCH DATASET

**Task:** Use our approach to improve the original web rank by personalization based on text comprehensibility

#### **Evaluation Measures [Dou et al. 2007]**

- Average Clicked Rank
- Rank Scoring

#### **Our Approach**

3\*2\*3=18

Click2 Click3

Click1

X Weighted Unweighted Basic X Topical Collaborative

Strength of preference

$$Q_u = |P_u - 0.5|$$

The larger  $Q_u$  is, the stronger preference towards harder or easier text u has

### **OVERALL PERFORMANCE: AVERAGE CLICKED RANK**



### **OVERALL PERFORMANCE: RANK SCORING**



### PAIRED T-TEST AGAINST WEB RANK ON AVERAGE CLICKED RANK

|            | strong |               | all  |     |     |
|------------|--------|---------------|------|-----|-----|
|            | 10%    | 50%           | 100% |     |     |
| Weighted   | Click1 | BASIC         | ***  | *** | *** |
|            |        | TOPICAL       | ***  | *** | *** |
|            |        | COLLABORATIVE | ***  | *** |     |
|            | Click2 | BASIC         | **   | *   | *   |
|            |        | TOPICAL       | ***  | **  | **  |
|            |        | COLLABORATIVE | ***  | *** |     |
|            | Click3 | BASIC         | ***  | *** | *** |
|            |        | TOPICAL       | ***  | *** | *** |
|            |        | COLLABORATIVE | ***  | *** |     |
| Unweighted | Click1 | BASIC         | ***  | *** | *** |
|            |        | TOPICAL       | ***  |     |     |
|            |        | COLLABORATIVE | ***  |     |     |
|            | Click2 | BASIC         | **   |     |     |
|            |        | TOPICAL       | **   |     |     |
|            |        | COLLABORATIVE | ***  |     |     |
|            | Click3 | BASIC         | ***  | **  | **  |
|            |        | TOPICAL       | ***  |     |     |
|            |        | COLLABORATIVE | ***  |     |     |

\*(p < 0.05), \*\*(p < 0.01), \*\*\*(p < 0.001)

### PAIRED T-TEST AGAINST WEB RANK ON AVERAGE CLICKED RANK

|            | strong |               | all  |     |     |
|------------|--------|---------------|------|-----|-----|
|            | 10%    | 50%           | 100% |     |     |
|            | Click1 | BASIC         | ***  | *** | *** |
|            |        | TOPICAL       | ***  | *** | *** |
|            |        | COLLABORATIVE | ***  | *** |     |
|            | Click2 | BASIC         | **   | *   | *   |
| WEIGHTED   |        | TOPICAL       | ***  | **  | **  |
|            |        | COLLABORATIVE | ***  | *** |     |
|            | Click3 | BASIC         | ***  | *** | *** |
|            |        | TOPICAL       | ***  | *** | *** |
|            |        | COLLABORATIVE | ***  | *** |     |
| Unweighted | Click1 | BASIC         | ***  | *** | *** |
|            |        | TOPICAL       | ***  |     |     |
|            |        | COLLABORATIVE | ***  |     |     |
|            | Click2 | BASIC         | **   |     |     |
|            |        | TOPICAL       | **   |     |     |
|            |        | COLLABORATIVE | ***  |     |     |
|            | Click3 | BASIC         | ***  | **  | **  |
|            |        | TOPICAL       | ***  |     |     |
|            |        | COLLABORATIVE | ***  |     |     |

\*(p < 0.05), \*\*(p < 0.01), \*\*\*(p < 0.001)

### PAIRED T-TEST AGAINST WEB RANK ON AVERAGE CLICKED RANK

|            |        |               | strong |     | all |
|------------|--------|---------------|--------|-----|-----|
|            | 10%    | 50%           | 100%   |     |     |
|            | Click1 | BASIC         | ***    | *** | *** |
|            |        | TOPICAL       | ***    | *** | *** |
|            |        | COLLABORATIVE | ***    | *** |     |
|            | Click2 | BASIC         | **     | *   | *   |
| WEIGHTED   |        | TOPICAL       | ***    | **  | **  |
|            |        | COLLABORATIVE | ***    | *** |     |
|            | Click3 | BASIC         | ***    | *** | *** |
|            |        | TOPICAL       | ***    | *** | *** |
|            |        | COLLABORATIVE | ***    | *** |     |
| Unweighted | Click1 | BASIC         | ***    | *** | *** |
|            |        | TOPICAL       | ***    |     |     |
|            |        | COLLABORATIVE | ***    |     |     |
|            | Click2 | BASIC         | **     |     |     |
|            |        | TOPICAL       | **     |     |     |
|            |        | COLLABORATIVE | ***    |     |     |
|            | Click3 | BASIC         | ***    | **  | **  |
|            |        | TOPICAL       | ***    |     |     |
|            |        | Collaborative | ***    |     |     |

(p < 0.05), (p < 0.01), (p < 0.01)), (p < 0.001)

### **DIFFERENT USER PROFILE MODELS**



### **DIFFERENT USER PROFILE MODELS**



### EXPERIMENT ON YAHOO! ANSWERS

**Task:** Users can choose the best answer for questions they posted, we rank all the answers and try to make the rank of the best answer as small as possible

#### Method

- Random
- Majority (a preference for harder text)
- Our model

#### Performance

| (p < 0.05), **(p < 0.01), ***(p < 0.001)) |        |          |                  |  |  |
|-------------------------------------------|--------|----------|------------------|--|--|
| Fraction of users                         | Random | Majority | Our model        |  |  |
| 5% (strongest)                            | 3.375  | 2.947    | 2.895 (***, ***) |  |  |
| 10%                                       | 3.596  | 3.096    | 3.079 (***, ***) |  |  |
| 100% (all)                                | 4.525  | 4.093    | 4.149 (***, )    |  |  |

### DIFFERENCES FROM COLLINS-THOMPSON ET AL. 2011

|                                                 | Collins-Thompson et al.                 | Our work                                                                                                            |  |  |
|-------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| Readability/<br>comprehensibility<br>classifier | Explicitly models school reading levels | Trained on English Wikipedia vs.<br>simple English Wikipedia. More<br>general, e.g., improvement in<br>topic health |  |  |
| Approach                                        | A generative model                      | Extract preference pairs<br>Collaborative filtering                                                                 |  |  |
| Application                                     | Web search                              | Web search<br>Community question answering                                                                          |  |  |

## CONCLUSION

Develop a unified framework for personalized content selection using text comprehensibility

Model users' comprehensibility preferences by extracting preference pairs and apply collaborative filtering to alleviate the problem of data sparseness

Modeling text comprehensibility can significantly improve content ranking in both web search and community question answering

# Thank you!

# **Q & A**